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The Riemann zeta function ¢(s)

@ OnRes>1,

oo

=> ne*=J[1-p %"
n=1 p
@ Analytic continuation to C \ {1}.
@ Functional equation &(s) := S x=2r(2)¢(s) = £(1 — s).

© No zeros outside of the critical strip 0 < Re s < 1 except trivial
zeros —2,—4,—6,....
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The Riemann zeta function ¢(s)

@ OnRes > 1,

oo

= Z n—S = H(1 — ,D_s)_1 .
n=1 P
@ Analytic continuation to C \ {1}
@ Functional equation &(s) := S x=2r(2)¢(s) = £(1 — s).

© No zeros outside of the critical strlp 0 < Re s < 1 except trivial
zeros —2,—4,—6,....

Riemann Hypothesis
All the nontrivial zeros of ((s) are on the critical line Re s = 1/2. }

In this talk, we assume RH!
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Pair Correlation of zeros of ((s)

Assume RH. Define

_ T —1 ic(y—~") /
Fla,T) = (5_logT) o<§<rT w(y =),

where 1/2 + iy and 1/2 + i»' are zeros of {(s)
and w(u) = 4/(4 + u?) is a weight function.
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Pair Correlation of zeros of ((s)

Assume RH. Define
T —1 ia(y—+" /
FlaoT)=(5-log )™ 37 T w(y —),
0<y,y'<T

where 1/2 + iy and 1/2 + i»' are zeros of {(s)
and w(u) = 4/(4 + u?) is a weight function. Then
Q@ F(a,T)iseven.
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Pair Correlation of zeros of ((s)

Assume RH. Define

Fla,T)=(5-loa Ty 32 o0y ),

0<y,y'<T

where 1/2 + iy and 1/2 + i»' are zeros of {(s)
and w(u) = 4/(4 + u?) is a weight function. Then
Q@ F(a,T)iseven.
@ F(«, T)is nonnegative.
Since w(y — ') =2/7 [T AT )(1+(t ~yzy» We see that

Flo. T TIogT/oo

2

dt > 0.

Z Tla'y
1 (f—~)2
o2 1+ (=)
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Pair Correlation of zeros of ((s)

Flo.T) = (5-log T)' Y0 70wy —)

0<y,y'<T

TIogT/

Theorem[Montgomery]

Assume RH. For |a| < 1, we have
F(a, T) = |a| + o(1) + T~3ellog T(1 + o(1)).

Tlow
Z 1+(t—

2

dt > 0.

Conjecture 1
F(o, T) =1+ 0(1) for a > 1.
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Pair Correlation of zeros of ((s)

Flo.T) = (5-log T)' Y0 70wy —)

0<v,y'<T
Tlog T /

Theorem[Montgomery]

Assume RH. For |a| < 1, we have
F(a, T) = |a| + o(1) + T~3ellog T(1 + o(1)).

2

Tiory
> 0.
DIy e

Conjecture 1
F(o, T) =1+ 0(1) for a > 1.

@ Spike
@ Difficulty of Conjecture 1
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F(a,T)

Assume RH and let

6o T) = (5 lea T S (A 08T wiy ).

0<y,y'<T T ) Iog T

Theorem[Montgomery]

For0 < a < 1, we have G(a, T) ~ 1 + §.

Theorem[Goldston, Gonek] 1990

Fora>0,Breal,and T > 2,
a(a-1G(3.7) < [J*F(a, T)da < a(G(a T)+ 3G (4, T)).
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F(a,T)

Assume RH and let

6o T) = (5 lea T S (A 08T wiy ).

0<y,y'<T T ) Iog T

Theorem[Montgomery]

For0 < a < 1, we have G(a, T) ~ 1 + §.

Theorem[Goldston, Gonek] 1990

Fora>0,Breal,and T > 2,
a(a-3G(4 7)) < [ F(a,T)da < a(G(a T)+3G(3.7)).

As a consequence, f*6+1 F(a, T)da is bounded.

Yoonbok Lee (University of Rochester) Correlations of Zeros Aug 21, 2012

5/41




Sketched proof of Montgomery’s Theorem
Assume RH and let

_ in 2 (y—+')log T\ 2
G, T) = (109 T) " Tocr et (T5t et ) Wl = ).

Theorem[Montgomery]

For0 < a <1, we have G(a, T) ~ 1 + §.

(Sketched proof) If 7 is the Fourier transform of r, then
r(u) = [° H(v)e? W a.
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Sketched proof of Montgomery’s Theorem
Assume RH and let

_ in 2 (y—+')log T\ 2
G, T) = (109 T) " Tocr et (T5t et ) Wl = ).
Theorem[Montgomery]
For0 < a <1,wehave G(a, T) ~ 1 +%.

(Sketched proof) If 7 is the Fourier transform of r, then
I’(U) _ ffooo A( )GZw/uvdV

Thus, we have

o<y <1 H((y = 7)(27) " log T)w(y —+)

ZO<'y v <T(foo A TI = Vdv) W(’V g )
=(2m) "Tlog T [ F( F v, T)#(v)dv.
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Sketched proof of Montgomery’s Theorem
Assume RH and let

_ in 2 (y—+')log T\ 2
Gl T) = (109 T) ™" Yoe et (et g ) W =)
Theorem[Montgomery]
For0 < a <1,wehave G(a, T) ~ 1 +%. J

(Sketched proof) If 7 is the Fourier transform of r, then
I’(U) — ffooo A( )GZw/uvdV

Thus, we have

Y o<y <1 H((v =7)(2m) Tlog T)w(y — ¥

ZO<'y'y <T(fOo A TI’Y v Vdv)W(fy 7)
= (2r)~"'Tlog Tf_ooF (v, T)P(v)av.

Choose r(u) = ((sinmau)/rau)?, then (LHS) = (2 log T)G(«, T) and

/_OO F(v, T)#(v)dv = ‘:2/& (a— |V|))F(v, T)adv.

—x
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Goldston, Gonek and Montgomery’s work
Let ¢(x) = 3 <, A(n), where A(n) = log p if nis a prime power pX and
A(n) = 0 otherwise. Define

o, T) = / ¢/ /¢(o + it)? ot
P(8, T)=/1o°(w(X+X/T)—l/)(X)—X/T)Zx‘Z—Zﬁdx
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Goldston, Gonek and Montgomery’s work
Let ¢(x) = 3 <, A(n), where A(n) = log p if nis a prime power pX and
A(n) = 0 otherwise. Define
(o, T) = / ¢/ ¢(o + it) \ dt
P(3.T) = [ (00x+x/T) = () = x/ T2 2 2ok
1
Note that PNT says ¢(x) ~ x.
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Goldston, Gonek and Montgomery’s work

Let ¢(x) = 3 <, A(n), where A(n) = log p if nis a prime power pX and
A(n) = 0 otherwise. Define

(o, T) = /\g/ca+/t\ dt

P(3,T)= /100(1#()( 4 x/T) = (x) — x/T)2x~228dx

Note that PNT says ¢(x) ~ x. Assume RH and suppose A > 0 is fixed.
If there exists a number f(A) such that one of the following asymptotic
formulas is true as T — oo, then all of them are true:

1 A 5

F(o; T)e 24 %da ~f(A),

A log? T
P(IogT T> ~H(A) =

0ot
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Higher Analogue of /

N=J+K>2,J>0K>1.

e=(e1,62,...,en),gj=1forj< d,gj=-1ford <j<J+ K=N.
a=(ay,a,...,ayv)witha, >0anda,~1/log T for1 <n<N.

Here a, ~ 1/log T means there exist constants 0 < A, < A, such that
An/log T < |an| < A,/log T.

Our generalization of the mean value /(o; T) is

T N CI
l(o,a,6:T) = / [ ¢lo+ant icnt) ot
0 p=i
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Higher Analogue of /

N=J+K>2,J>0,K>1.

€= (e1,62,...,en),gj=1forj< J,gj=-1ford <j<J+ K=N.
a=(ay,a,...,ayv)witha, >0anda,~1/log T for1 <n<N.

Here a, ~ 1/log T means there exist constants 0 < A, < A, such that
An/log T < |an| < A,/log T.

Our generalization of the mean value /(o; T) is

TN
l(o,a,e; T) = / H (o + ap + iept) dt.
0o 56

When N =2, =(1,—1) and a = (a, a), we have

2

C—/( +a+it)| dt.

.
l(o,a,e; T) = / R
0
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Higher Analogue of F

Let o = (a1, ...,an_1) With ap € R.
Our generalization of F(a; T) is

Flas T)=N(T)"" > T 2o Mw(yy —yy, ..., yn—1 =)

O<’Y1 7"'7’7N<T

where N(T) is the number of zeros 5 + iy of {(s) with0 < v < T and
w(xy, ..., xn_1) = [ =] 7 Is a weight function. Note that
N(T)~ ZLlogT.
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Higher Analogue of F

Leta = (011 yeens aN,1) with a, € R.
Our generalization of F(a; T) is

Flas T) = N(T)™ S T Ereneln (g~ 1 =)

O<’Y1 7"'7’7N<T

where N(T) is the number of zeros 3 + iy of (s) with0 < v < T and

w(xy, ..., xn_1) = [ =] 7 Is a weight function. Note that
N(T) ~ 5 log T.

Lete,=(0,...,1,...,0)for1 <n< Nandey=(—1,...,—1). Then
a-ep=ap 1<n<Nanda-ey=—aj—---—ay_1 and

N
Flas T)=N(T)™" > TiZnleedmimp(y — gy vy — ).

O<’Y1 7"'7’YN<T
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Higher Analogue of F

Flas Ty =N(T)™H 7 TiEmaleendon(yg — gy, qn-q = ).

O<’717'~'77N<T
Notethata-e,=apn, 1 <n<Nanda-ey=—«a1 — - —an_1.
When o« - e, = 0 for some 1 < n < N, there is no cancelation on the

sum over .
Thus, we expect that F(«; T) has Spike along the hyperplanes
a-e,=0,1<n<N.

We write F*(c; T) for the part of F(«; T) that is supported outside the
spikes from the lower correlation terms.
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Hypothesis AC on F(«; T)

F*(a; T) : the part of F(«; T) supported outside the spikes from the
lower correlation terms.

Hypothesis AC

We have
X1+1 XN_1+1
/ / |F*(co; T)| dox < 1
Xy XN—1

uniformly for (x4, Xp, ..., Xy_1) € RN-1.

That is, averages of F* is bounded. When N = 2, Hypothesis AC is
known.
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Hypothesis AC on F(«; T)

F*(a; T) : the part of F(a; T) supported outside the spikes from the
lower correlation terms.

Hypothesis AC

We have
X1+1 XN_1+1
/ / |F*(co; T)| dox < 1
Xy XN—1

uniformly for (x4, Xp, ..., Xy_1) € RN-1.

That is, averages of F* is bounded. When N = 2, Hypothesis AC is
known.

Let Fu(a; T) = F(e;; T) — F*(e; T). How small F, is?
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Inside the spikes ( N = 3)

Let &« = (v, ap). Suppose ao = 0. Then

Fla,0; ) =N(T)™" >~ T'0 ) w(qq — 43,92 — 7).
0<y1,72,73<T

Summing over 7, we expect that

F(a4,0; T)N':/?TT) > T TRw(y — 45) = (log T)F(ay; T).

0<vy1,73<T

Since the “spike” term in F(ap; T)is (1 + o(1))T2le2log T,

we expect that F(aq, ap; T) is approximately T—2l°2l log T F(ay; T)
when |ap| <loglog T/(2log T).

The same argument applies when a4 or a1 + ap is near 0.
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Hypothesis LC on F(«; T)

More generally, F(a; T) degenerates into a lower level sum on the set
S=UN_,Snwhere S, = {acRV""|a-e,=0}for1 <n<N.
Define n, = {t e RN-" | |t —y| < loglog T/(2log T) for some y € S,}
and = UN_, . Then

Hypothesis LC

Fla; T)=Fi(e; T) + F*(ex; T)

@ F.(«; T)is supported on  and
F.(o; T) < |F(én; T)| T~ 2lonllog T
if a € n, forsome 1 < n<N.

© For any fixed K > 0, F*(«; T) is bounded on the
(N — 1)-dimensional cube [-K,K]V-1,as T — oo.

ap is obtained from « by deleting a, for n < N. If n = N, delete any
one of aq,...,an_1.
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Higher Analogue of P

To define our analogue of P(3; T) letb = (by, by, ..., by) with b, > 0 for
1 </ < L. We define Ap(n) by

L
¢! No(N)
HZ S+b/)—_)z ns ’
I=1 n
where ¢ > 1. Then
logps ---log pr
/\b(n) = Z bivy bovp b vy
pu1 pu2 p1 p2 o pL
1 2

Thus Ap(n) is supported on those positive integers n that are
representable as a product of L, not necessarily distinct, prime powers.
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Higher Analogue of P

We define Ry (x) to be the sum of the residues of
L
C, XS
ll} c (s+ by) s

at the points s = 1 — b;. Next we set

1)ES " Ao(n)

n<x

where the prime on the sum indicates that the term Ap(x) is counted
with weight 1/2. We also write

Ap(X) = Vp(X) — Rp(x).

Thus, Ap measures the difference between Wy (x) and its expected
value.
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Higher Analogue of P

Now leta = (a1, a2, ...,an) with a, > 0and a, ~ 1/log T as before.
Alsolet 3 >0and 1 < J < N. Writing a; = (a1, a2, ..., ay) and
a:/ = (3J+1 s QY42 -y aN), we set
P(B,a,J; T) =
© X X ax
= 7 (B ) = 000) (30 (1 7) - 200) 555

This is our analogue of P(3; T) .
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Equivalence between /[ and F

Theorem 1
Assume RH, Hypothesis AC, and Hypothesis LC. Leta = (a1, ..., an),
where the a, ~ 1/log T and are positive, and let e = (e1,...,en)

consist of J > 0 ones followed by K > 1 negative ones. Then

’ (%= aeT)=Tlog"T / F*(a; T) T~ Zosn @0 gy 4 o Tlog" T),
UN,E

where Uy = {(ay,...,an_1) € RN-1 legaq > 0,...,eyay > 0}
and ay = — ),y n.
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Equivalence between /[ and F

Theorem 1
Assume RH, Hypothesis AC, and Hypothesis LC. Leta = (a1, ..., an),
where the a, ~ 1/log T and are positive, and let e = (e1,...,en)

consist of J > 0 ones followed by K > 1 negative ones. Then

/(1,a,e; T) =TlogN T / F*(au; T) T~ 2Znsn@ncnn gy 4 o( TlogN T),

2
UN,s
where Uy = {(a1,...,an_1) € RN"|eqay > 0,... eyan > 0}
and ay = — ),y n.

When N=2,e =(1,—1),a=(A/log T,A/log T) and ap = —«1, we
have Uz = {a1 € Rlay > 0}, 3 » @nenan = 2Aay/log T and

I(1/2,a,e; T) ~ T(log T)2/ F*(as; T)e 2% day.
0
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Equivalence between /[ and F

Corollary 1
With the same hypotheses as in Theorem 1, we have

/<%,a,s; T) < TlogN T.
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Equivalence between [/ and P

Theorem 2

Assume RH and leta = (a1, a, . . ., ay) with a, = A,/ log T and
Ap>0for1 <n<N.Alsolet1 <J< Nande = (e1,e2,...,&n),

where ¢4, ...,ey are allone, and .1, ..., ey are all negative one.
Then for 1/2 <o <9/10 we have

7(ﬂ% U+an+/ent)) (Sin tt/2T>2dt

o 1 log?V*! T
= EP(O'—E,a,J, T) +O<T)

The constant implied by the O-term depends on Ay, ..., Ay but not on
o,J,orT.
Yoonbok Lee (University of Rochester) Correlations of Zeros
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Equivalence between [/ and P
Theorem 3

Assume RH, Hypothesis AC, and Hypothesis LC. Suppose that C is
fixed and positive, and that a = (ay, ..., ay) with a, = A,/log T and

each A, fixed and positive. Define

T

N
le(o,a,6;T) = [ J] >(

n=1

o+ an+ iEnt) dt

o~

N~

If there exists a number f(C, A, J) such that one of the following
asymptotic formulas holds, then the other also holds:

L (; LOR AL T) ~ HC,A )T log"T,

log T’ log T’
cC A logN' T
<Iog T'log T’ Ji ) HC,AJ) 2T
Yoonbok Lee (University of Rochester) Correlations of Zeros
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Recall Theorem 1 (/ — F)

Theorem 1
Assume RH, Hypothesis AC, and Hypothesis LC. Leta = (a1, ..., an),
where the a, ~ 1/log T and are positive, and let e = (e1,...,en)

consist of J > 0 ones followed by K > 1 negative ones. Then

/(1,a,e; T) =TlogN T / F*(au; T) T~ 2Znsn@ncnn goy 4 o( T logN T),

2
UN,s
where Uy = {(a1,...,an_1) € RN"|eqay > 0,... eyan > 0}
and ay = — >,y an.
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Proof of Theorem 1

Assume RH.

—C—/(S) = i D) s > 557 (p— s) + O(6°*log )

uniformly for g Vi <6< 1and

Lemma 1

Assume RH. Let X = (log T)*/3, a~ 1/log T with 2> 0, and ¢ = +1.
Then for |t| < T we have

C/

C( +a+ iet) = ZR —a+ig(y — 1)) + O(X"/?),

ol

where R(z) = X*T(z2).
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Proof of Theorem 1
Recall the definition of / :

T N CI
I(O',a,E, T):/ H*(U‘Fan“l“lf:nt)dt
0o 56
By Lemma 1, we have

’(%73‘»5; T) = (-1)"M(a,e; T) + O(T (log T)N=1/3),

where
-
M(a,e; T) = /H (ZF{ —anp+ fep(yn — t))> dt.
0 n=1
Truncate the sums of ,’s, and extend the integral from —oo to co. Then

N
MaeT) = 3 / T R(=an + ien(n — 1)) dt + O((log T)?)

n=1
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Proof of Theorem 1
Change the variable t — t + ~y, then

N
M@, T)= ) 11 R(-=an + ien(yn — w — 1) ot

0<y1rn<T b N
+ O((log T)B)
= > R — AN IN—1 — In) + O((log T)?),

where L = (1/27)log T, 7; = ;L and

o0

R(u) = / T A(=an+ icn(un/L - 1)) ot
oo =1
foru=(uy,...,uny_1) and uy = 0.
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Proof of Theorem 1

We define r(u) = R(u)w(u/L)~" and w(x) = [[h, 4+X2 Then

M@, T)~ D> rF=AN, - N1 =N W (V1 =N -

S YIN—1—IN)-
0<v1,-.IN<T

Since

r(V1 = AN - IN-1 — IN) = / Fa) @™ 2nen @n(n=W) gy
RN—1
= / T(a) T n<n nn=) gy,
RN—1

we have

M(a,e; T) ~ N(T) / F(a; T) T(a) dox
RN-1
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Proof of Theorem 1

l(%,a,e; T) = (—1)VN(T) / F(o; T) () do + O(T LN=1/3)

R
Our next task is to find a useful expression for 7(c).
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Proof of Theorem 1

l(%,a,e; T) = (~1)"N(T) / F(e; T) F(er) da + O(T LN-1/3)
RN-1
Our next task is to find a useful expression for 7(c).

Tla) = / r(u)e 2meY gy

RN-1

N—-1
—27ricx~u
/R E( 4L2> du

s 82 —27iou
/ H - f6ar daz ) RWe AU
o

RN

- H < 167T2L2 af >ﬁ(a)'
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Proof of Theorem 1

0 N
R(a) = / / <HR —ap+ ien (Un/L — 1)) —27”'%“") dt du
RN—-1 — n=1

N—1

/ /R —ay — ient) (H R(—an + ienun/L) ‘2’”‘“"(“"“’)) at du

RN—-1 —o0

by the substitutions u, — up + tL for n < N. Since R(z) = X*T'(z), we
can apply Lemma 2 to above equation.

Lemma 2
Let 0<a<1,AcR,and s = 41. Then

/ e T (—a+ icg) de = 2r & (67" —1).
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Recall Theorem 2 (/ — P)

Theorem 2

Assume RH and leta = (a1, a, . . ., ay) with a, = A,/ log T and
Ap>0for1 <n<N.Alsolet1 <J< Nande = (e1,e2,...,&n),

where ¢4, ...,ey are allone, and .1, ..., ey are all negative one.
Then for 1/2 <o <9/10 we have

7(ﬂ% U+an+/ent)) (Sin tt/2T>2dt

o 1 log?V*! T
= EP(O'—E,a,J, T) +O<T)

The constant implied by the O-term depends on Ay, ..., Ay but not on
o,J,orT.
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Proof of Theorem 2

Lemma 3

Assume RH. Suppose that |b)| < 11—0 with Re b, > 0. Then for
1 9
53 <00 < 1>

og+ioco L

= (—1)NZ,Ab(n) = Rp(x) + % / H CI (s+ b/ d

n<x oo—ico 1=1

where Rp(x) is the sum of the residues of

L
Cl XS
H = (s+b) —
I=1 ¢ S
at the points s=1 — b,.

Lemma 3 holds by Perron’s formula.
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Proof of Theorem 2

Recalling that Aa,(x) = (—1 )NZZSX/\aJ(n) — Ra,(x), we see from
Lemma 3 that

Na,(e7%) — Aq,(€7)

0'7'

_L7
or
— 00

for 3 <o < 3. This expresses the left-hand side as a Fourier
transform.

ed(a-i—lt) —1

J C, ‘
j=1
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Proof of Theorem 2
We use Plancherel’s formula in the form

| Hoyatmdr = [ tog-na,

—00 —00

where

oo

f(r) = / f(t)e 2

—0o0

and similarly for g. Then we obtain

/oo (AaJ(eT—HS) - AaJ(eT)) (Aa’J(eT+5) — Ay (ef))e_ngdT

J
—0o0

N

X / Hg (o + an + ient)

Compare it with the definition P(5,a,J; T) =
f1oo (AaJ <X + %) - AaJ(X)) (Aaf, (X + %) Aa’ (X)> X2+2,8 :

Yoonbok Lee (University of Rochester) Correlations of Zeros Aug 21, 2012
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Recall Theorem 3 (/ — P)
Theorem 3

Assume RH, Hypothesis AC, and Hypothesis LC. Suppose that C is
fixed and positive, and that a = (ay, ..., ay) with a, = A,/log T and

each A, fixed and positive. Define

7Y

N
le(o,a,6;T) = [ J] >(

n=1

o+ an+ iEnt) at.

o~

N~

If there exists a number f(C, A, J) such that one of the following
asymptotic formulas holds, then the other also holds:

I (; . C A T> ~ f(C,A,J) T log" T,

log T’ log T’
cC A logN' T
<Iog T'log T’ Ji ) HC,AJ) 2T
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Proof of Theorem 3
The first asymptotic formula of Theorem 3 is

TN
1 Cc A\ ¢ (1 CH+A, .
4z mar eT T)—/[Ic (2+ og i)

Define

Then it is

)
/ g(t. T)dt~ T
0
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Proof of Theorem 3
The second asymptotic formula of Theorem 3 is, by Theorem 2,

C A
P<IogT’IogT’J’ T>
¢ (1 CH+A, . sint/2T
’“/(Ec(z’* ot i) ) ()

—0o0

Ji ¢ (1, C+A, . sint/2T\?
0

and it is equivalent to

/ooog(t, T) (Sin tt/2T>2dt~

Yoonbok Lee (University of Rochester) Correlations of Zeros Aug 21, 2012
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Proof of Theorem 3

Therefore, Theorem 3 is to show the equivalence of two asymptotic
formulas

)
/g(t,T)dtNT
0
o sint/2T\? T 1
[y (S a o

C+ A,
logn

and

where

N
g(t.m) = 2Re [ %(% n n ient)/(f(C,A, J)log" ).
n=1
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Proof of Theorem 3

We appeal to modified versions of two Lemmas in Goldston’s paper.
These concern the equivalence under certain conditions of

T
| ottt ~7 (1)
as T — oo, and )
&0 sin kt T
et (S ot~ 5 @
0
as k — 0+.
Yoonbok Lee (University of Rochester) Correlations of Zeros

Aug 21, 2012 36/41



Proof of Theorem 3
We appeal to modified versions of two Lemmas in Goldston’s paper.
These concern the equivalence under certain conditions of

)
/0 glt.mydt~ T (1)

sinkt T
/ g(t ( ) at ~ >f (2)

as k — 0+. Firstwe see 1 — 2.

as T — oo, and

Lemmai — 2

Let g(t,n) be a continuous function of t and n for t > 0 and n > 2.
Suppose that 9(t,n) < logN(t + 2) and that fOT lg(t,m)|?dt < T holds
fornlog V1< T < nlog’\“r1

If (1) holds uniformly for nlog=™V=17 < T < 5logN*" 5, then (2) holds
forn~1/k.

v

Yoonbok Lee (University of Rochester) Correlations of Zeros Aug 21, 2012 36 /41



Proof of Theorem 3
To apply Lemma 1 — 2, we should prove that

)
/ g(t, T)dt ~ T
0
implies
)
/ g(t,mydt ~ T
0

holds uniformly for nlog=™N="n < T < nlogN*' .
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Proof of Theorem 3
To apply Lemma 1 — 2, we should prove that

)
/ g(t, T)dt ~ T
0
)
/ gt.mat~ T
0

N+1

implies

holds uniformly for nlog™V""n < T < nlog"N*" . It is proved by

Lemma

Assume RH, Hypothesis AC, and Hypothesis LC. Let By, ..., By be
fixed positive real numbers. Suppose that
nlog‘ 25 < T <nlogN*21. Then we have

Jo TIN g( + |oBg"n+’5nt)dt
Jo TN, f( ogT L Isnt) dt+ O(Tlog"="' T loglog T).

v
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Proof of Theorem 3

Lemma

Assume RH, Hypothesis AC, and Hypothesis LC. Let By, ..., By be
fixed positive real numbers. Suppose that
nlog‘ 25 < T < nlogN*2 1. Then we have

fo Hn 1 C( +|on +/€nt)dt
fo I e ( ogT + /Ent)dt+ O(Tlog"=' T loglog T).

We use the fact
logn =log T + O(loglog T)

and the following consequence of Corollary 1 : Under RH, AC and LC

we have
.
| s

j<J

2

¢(1. 5 2J
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Proof of Theorem 3

For the converse, we need the followings:

as T — oo, and

as k — 0+.

Lemma4 — 3

Let g(t,n) be a continuous function of t and n for t > 0 and n > 2.
Suppose that 9(t,n) < log"N(t + 2) and that fOT lg(t,n)[2dt < T holds
for nlog™N="n < T < nlogN*' 5.

Conversely, if (4) holds uniformly for n=1log™"1n < x < =" logN*'y,
then (3) holds forn ~ T.

v
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Proof of Theorem 3

We also need

Lemma

Assume RH, Hypothesis AC, and Hypothesis LC. Let By, ..., By be
fixed positive real numbers. Suppose that
nlog~N=2y < T < nlog"*21. Then we have

fO Hn 1 (( +Iogn+lent> (M)zdt =

f 2
Jo IR (3 + @ +ient) (3™/27)" dt+O(T~"log"~" T loglog ).

v

By the similar argument to 1 — 2, we can complete the proof of
Theorem 3.
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