Mean Values of $\zeta'/\zeta(s)$, Correlations of Zeros, and the Distribution of Almost Primes

Yoonbok Lee (with David Farmer, Steve Gonek and Steve Lester)

University of Rochester

Aug 21, 2011

Yoonbok Lee (University of Rochester)

Correlations of Zeros

Aug 21, 2012 1 / 41

The Riemann zeta function $\zeta(s)$

• On Re *s* > 1,

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1}.$$

2 Analytic continuation to $\mathbb{C} \setminus \{1\}$.

- Summation all equation $\xi(s) := \frac{s(s-1)}{2}\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = \xi(1-s).$
- No zeros outside of the critical strip 0 < Re s < 1 except trivial zeros -2, -4, -6,

< 口 > < 同 > < 回 > < 回 > < 回 > <

The Riemann zeta function $\zeta(s)$

1 On Re
$$s > 1$$
,

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1}.$$

2 Analytic continuation to $\mathbb{C} \setminus \{1\}$.

- Sumptional equation $\xi(s) := \frac{s(s-1)}{2}\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = \xi(1-s).$
- No zeros outside of the critical strip 0 < Re s < 1 except trivial zeros -2, -4, -6,

Riemann Hypothesis

All the nontrivial zeros of $\zeta(s)$ are on the critical line Re s = 1/2.

In this talk, we assume RH!

Yoonbok Lee (University of Rochester)

< 口 > < 同 > < 回 > < 回 > < 回 > <

Assume RH. Define

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma'),$$

where $1/2 + i\gamma$ and $1/2 + i\gamma'$ are zeros of $\zeta(s)$ and $w(u) = 4/(4 + u^2)$ is a weight function.

4 A N

- **→ → →**

Assume RH. Define

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma'),$$

where $1/2 + i\gamma$ and $1/2 + i\gamma'$ are zeros of $\zeta(s)$ and $w(u) = 4/(4 + u^2)$ is a weight function. Then • $F(\alpha, T)$ is even.

A (10) A (10)

Assume RH. Define

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma'),$$

where $1/2 + i\gamma$ and $1/2 + i\gamma'$ are zeros of $\zeta(s)$ and $w(u) = 4/(4 + u^2)$ is a weight function. Then

- $F(\alpha, T)$ is even.
- 2 $F(\alpha, T)$ is nonnegative.

A (10) > A (10) > A (10)

Assume RH. Define

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma'),$$

where $1/2 + i\gamma$ and $1/2 + i\gamma'$ are zeros of $\zeta(s)$ and $w(u) = 4/(4 + u^2)$ is a weight function. Then

- $F(\alpha, T)$ is even.
- 2 $F(\alpha, T)$ is nonnegative. Since $w(\gamma - \gamma') = 2/\pi \int_{-\infty}^{\infty} \frac{dt}{(1 + (t - \gamma)^2)(1 + (t - \gamma')^2)}$, we see that

$$F(\alpha, T) = \frac{4}{T \log T} \int_{-\infty}^{\infty} \left| \sum_{0 < \gamma < T} \frac{T^{i\alpha\gamma}}{1 + (t - \gamma)^2} \right|^2 dt \ge 0.$$

A (10) A (10)

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma')$$
$$= \frac{4}{T \log T} \int_{-\infty}^{\infty} \left| \sum_{0 < \gamma < T} \frac{T^{i\alpha\gamma}}{1 + (t - \gamma)^2} \right|^2 dt \ge 0.$$

Theorem[Montgomery]

Assume RH. For $|\alpha| \leq 1$, we have $F(\alpha, T) = |\alpha| + o(1) + T^{-2|\alpha|} \log T(1 + o(1)).$

Conjecture 1

 $F(\alpha, T) = 1 + o(1)$ for $\alpha > 1$.

Yoonbok Lee (University of Rochester)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma')$$
$$= \frac{4}{T \log T} \int_{-\infty}^{\infty} \left| \sum_{0 < \gamma < T} \frac{T^{i\alpha\gamma}}{1 + (t - \gamma)^2} \right|^2 dt \ge 0.$$

Theorem[Montgomery]

Assume RH. For $|\alpha| \leq 1$, we have $F(\alpha, T) = |\alpha| + o(1) + T^{-2|\alpha|} \log T(1 + o(1)).$

Conjecture 1

$$F(\alpha, T) = 1 + o(1)$$
 for $\alpha > 1$.

Spike

Yoonbok Lee (University of Rochester)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$F(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma')$$
$$= \frac{4}{T \log T} \int_{-\infty}^{\infty} \left| \sum_{0 < \gamma < T} \frac{T^{i\alpha\gamma}}{1 + (t - \gamma)^2} \right|^2 dt \ge 0.$$

Theorem[Montgomery]

Assume RH. For $|\alpha| \leq 1$, we have $F(\alpha, T) = |\alpha| + o(1) + T^{-2|\alpha|} \log T(1 + o(1))$.

Conjecture 1

 $F(\alpha, T) = 1 + o(1)$ for $\alpha > 1$.

- Spike
- Difficulty of Conjecture 1

Yoonbok Lee (University of Rochester)

< ロ > < 同 > < 回 > < 回 >

$F(\alpha, T)$

Assume RH and let

$$G(\alpha, T) = \left(\frac{T}{2\pi}\log T\right)^{-1}\sum_{0<\gamma,\gamma'$$

Theorem[Montgomery]

For $0 < \alpha \leq 1$, we have $G(\alpha, T) \sim \frac{1}{\alpha} + \frac{\alpha}{3}$.

Theorem[Goldston, Gonek] 1990 For a > 0, β real, and $T \ge 2$, $a\left(a - \frac{1}{2}G\left(\frac{a}{2}, T\right)\right) \le \int_{\beta}^{\beta+a} F(\alpha, T) d\alpha \le a\left(G(a, T) + \frac{1}{2}G\left(\frac{a}{2}, T\right)\right).$

Yoonbok Lee (University of Rochester)

Correlations of Zeros

Aug 21, 2012 5 / 41

$F(\alpha, T)$

Assume RH and let

$$G(\alpha, T) = \left(\frac{T}{2\pi}\log T\right)^{-1}\sum_{0<\gamma,\gamma'$$

Theorem[Montgomery]

For $0 < \alpha \leq 1$, we have $G(\alpha, T) \sim \frac{1}{\alpha} + \frac{\alpha}{3}$.

Theorem[Goldston, Gonek] 1990 For a > 0, β real, and $T \ge 2$, $a\left(a - \frac{1}{2}G\left(\frac{a}{2}, T\right)\right) \le \int_{\beta}^{\beta+a} F(\alpha, T) d\alpha \le a\left(G(a, T) + \frac{1}{2}G\left(\frac{a}{2}, T\right)\right)$.

As a consequence, $\int_{\beta}^{\beta+1} F(\alpha, T) d\alpha$ is bounded.

Sketched proof of Montgomery's Theorem Assume RH and let

$$G(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} \left(\frac{\sin \frac{\alpha}{2}(\gamma - \gamma') \log T}{\frac{\alpha}{2}(\gamma - \gamma') \log T}\right)^2 w(\gamma - \gamma').$$

Theorem[Montgomery]

For $0 < \alpha \leq 1$, we have $G(\alpha, T) \sim \frac{1}{\alpha} + \frac{\alpha}{3}$.

(Sketched proof) If \hat{r} is the Fourier transform of r, then $r(u) = \int_{-\infty}^{\infty} \hat{r}(v) e^{2\pi i u v} dv$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketched proof of Montgomery's Theorem Assume RH and let

$$G(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} \left(\frac{\sin \frac{\alpha}{2}(\gamma - \gamma') \log T}{\frac{\alpha}{2}(\gamma - \gamma') \log T}\right)^2 w(\gamma - \gamma').$$

Theorem[Montgomery]

For $0 < \alpha \leq 1$, we have $G(\alpha, T) \sim \frac{1}{\alpha} + \frac{\alpha}{3}$.

(Sketched proof) If \hat{r} is the Fourier transform of r, then $r(u) = \int_{-\infty}^{\infty} \hat{r}(v) e^{2\pi i u v} dv$. Thus, we have $\sum_{0 < \gamma, \gamma' < T} r((\gamma - \gamma')(2\pi)^{-1} \log T) w(\gamma - \gamma')$ $= \sum_{0 < \gamma, \gamma' < T} (\int_{-\infty}^{\infty} \hat{r}(v) T^{i(\gamma - \gamma')v} dv) w(\gamma - \gamma')$ $= (2\pi)^{-1} T \log T \int_{-\infty}^{\infty} F(v, T) \hat{r}(v) dv.$

Sketched proof of Montgomery's Theorem Assume RH and let

$$G(\alpha, T) = \left(\frac{T}{2\pi} \log T\right)^{-1} \sum_{0 < \gamma, \gamma' < T} \left(\frac{\sin \frac{\alpha}{2}(\gamma - \gamma') \log T}{\frac{\alpha}{2}(\gamma - \gamma') \log T}\right)^2 w(\gamma - \gamma').$$

Theorem[Montgomery]

For
$$0 < \alpha \le 1$$
, we have $G(\alpha, T) \sim \frac{1}{\alpha} + \frac{\alpha}{3}$.

(Sketched proof) If \hat{r} is the Fourier transform of r, then $r(u) = \int_{-\infty}^{\infty} \hat{r}(v)e^{2\pi i u v} dv.$ Thus, we have $\sum_{0 < \gamma, \gamma' < T} r((\gamma - \gamma')(2\pi)^{-1}\log T)w(\gamma - \gamma')$ $= \sum_{0 < \gamma, \gamma' < T} (\int_{-\infty}^{\infty} \hat{r}(v)T^{i(\gamma - \gamma')v}dv)w(\gamma - \gamma')$ $= (2\pi)^{-1}T\log T \int_{-\infty}^{\infty} F(v, T)\hat{r}(v)dv.$ Choose $r(u) = ((\sin \pi \alpha u)/\pi \alpha u)^2$, then $(LHS) = (\frac{T}{2\pi}\log T)G(\alpha, T)$ and $f^{\infty} = 1 - f^{\alpha}$

$$\int_{-\infty}^{\infty} F(v,T)\hat{r}(v)dv = \frac{1}{v^2} \int_{-\alpha}^{\alpha} (\alpha - |v|)F(v,T)dv.$$

٠

Goldston, Gonek and Montgomery's work

Let $\psi(x) = \sum_{n \le x} \Lambda(n)$, where $\Lambda(n) = \log p$ if *n* is a prime power p^k and $\Lambda(n) = 0$ otherwise. Define

$$I(\sigma, T) = \int_{1}^{T} |\zeta'/\zeta(\sigma + it)|^2 dt$$
$$P(\beta, T) = \int_{1}^{\infty} (\psi(x + x/T) - \psi(x) - x/T)^2 x^{-2-2\beta} dx$$

< ロ > < 同 > < 回 > < 回 >

Goldston, Gonek and Montgomery's work

Let $\psi(x) = \sum_{n \le x} \Lambda(n)$, where $\Lambda(n) = \log p$ if *n* is a prime power p^k and $\Lambda(n) = 0$ otherwise. Define

$$I(\sigma, T) = \int_{1}^{T} |\zeta'/\zeta(\sigma + it)|^2 dt$$
$$P(\beta, T) = \int_{1}^{\infty} (\psi(x + x/T) - \psi(x) - x/T)^2 x^{-2-2\beta} dx$$

Note that PNT says $\psi(x) \sim x$.

< ロ > < 同 > < 回 > < 回 >

Goldston, Gonek and Montgomery's work

Let $\psi(x) = \sum_{n \le x} \Lambda(n)$, where $\Lambda(n) = \log p$ if *n* is a prime power p^k and $\Lambda(n) = 0$ otherwise. Define

$$I(\sigma, T) = \int_{1}^{T} |\zeta'/\zeta(\sigma + it)|^2 dt$$
$$P(\beta, T) = \int_{1}^{\infty} (\psi(x + x/T) - \psi(x) - x/T)^2 x^{-2-2\beta} dx$$

Note that PNT says $\psi(x) \sim x$. Assume RH and suppose A > 0 is fixed. If there exists a number f(A) such that one of the following asymptotic formulas is true as $T \to \infty$, then all of them are true:

$$I\left(\frac{1}{2} + \frac{A}{\log T}; T\right) \sim f(A) T \log^2 T,$$
$$\int_{0^+}^{\infty} F(\alpha; T) e^{-2A\alpha} d\alpha \sim f(A),$$
$$P\left(\frac{A}{\log T}; T\right) \sim f(A) \frac{\log^2 T}{T}.$$

Higher Analogue of *I*

 $N = J + K \ge 2, J \ge 0, K \ge 1.$ $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_N), \varepsilon_j = 1 \text{ for } j \le J, \varepsilon_j = -1 \text{ for } J < j \le J + K = N.$ $\mathbf{a} = (a_1, a_2, \dots, a_N) \text{ with } a_n > 0 \text{ and } a_n \approx 1/\log T \text{ for } 1 \le n \le N.$ Here $a_n \approx 1/\log T$ means there exist constants $0 < A_n \le A'_n$ such that $A_n/\log T \le |a_n| \le A'_n/\log T.$

Our generalization of the mean value $I(\sigma; T)$ is

$$I(\sigma, \mathbf{a}, \varepsilon; T) = \int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t) dt.$$

Higher Analogue of *I*

 $N = J + K \ge 2, J \ge 0, K \ge 1.$ $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_N), \varepsilon_j = 1 \text{ for } j \le J, \varepsilon_j = -1 \text{ for } J < j \le J + K = N.$ $\mathbf{a} = (a_1, a_2, \dots, a_N) \text{ with } a_n > 0 \text{ and } a_n \approx 1/\log T \text{ for } 1 \le n \le N.$ Here $a_n \approx 1/\log T$ means there exist constants $0 < A_n \le A'_n$ such that $A_n/\log T \le |a_n| \le A'_n/\log T.$

Our generalization of the mean value $I(\sigma; T)$ is

$$I(\sigma, \mathbf{a}, \varepsilon; T) = \int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t) dt.$$

When N = 2, $\varepsilon = (1, -1)$ and $\mathbf{a} = (a, a)$, we have

$$I(\sigma, \mathbf{a}, \varepsilon; T) = \int_0^T \left| \frac{\zeta'}{\zeta} (\sigma + \mathbf{a} + it) \right|^2 dt.$$

Higher Analogue of F

Let $\alpha = (\alpha_1, ..., \alpha_{N-1})$ with $\alpha_n \in \mathbb{R}$. Our generalization of $F(\alpha; T)$ is

$$F(\alpha; T) = N(T)^{-1} \sum_{0 < \gamma_1, ..., \gamma_N < T} T^{i \sum_{n < N} \alpha_n (\gamma_n - \gamma_N)} w(\gamma_1 - \gamma_N, ..., \gamma_{N-1} - \gamma_N)$$

where N(T) is the number of zeros $\beta + i\gamma$ of $\zeta(s)$ with $0 < \gamma < T$ and $w(x_1, \ldots, x_{N-1}) = \prod_{n=1}^{N-1} \frac{4}{4+x_n^2}$ is a weight function. Note that $N(T) \sim \frac{T}{2\pi} \log T$.

イロト イ団ト イヨト イヨト

Higher Analogue of F

Let $\alpha = (\alpha_1, ..., \alpha_{N-1})$ with $\alpha_n \in \mathbb{R}$. Our generalization of $F(\alpha; T)$ is

$$F(\alpha; T) = N(T)^{-1} \sum_{0 < \gamma_1, ..., \gamma_N < T} T^{i \sum_{n < N} \alpha_n (\gamma_n - \gamma_N)} w(\gamma_1 - \gamma_N, ..., \gamma_{N-1} - \gamma_N)$$

where N(T) is the number of zeros $\beta + i\gamma$ of $\zeta(s)$ with $0 < \gamma < T$ and $w(x_1,\ldots,x_{N-1}) = \prod_{n=1}^{N-1} \frac{4}{4+x^2}$ is a weight function. Note that $N(T) \sim \frac{T}{2\pi} \log T$. Let $\mathbf{e}_n = (0, ..., 1, ..., 0)$ for $1 \le n < N$ and $\mathbf{e}_N = (-1, ..., -1)$. Then $\alpha \cdot \mathbf{e}_n = \alpha_n, \ 1 \leq n < N \text{ and } \alpha \cdot \mathbf{e}_N = -\alpha_1 - \cdots - \alpha_{N-1} \text{ and } \alpha$

$$F(\boldsymbol{\alpha};T) = N(T)^{-1} \sum_{0 < \gamma_1, \dots, \gamma_N < T} T^{i \sum_{n=1}^N (\boldsymbol{\alpha} \cdot \mathbf{e}_n) \gamma_n} w(\gamma_1 - \gamma_N, \dots, \gamma_{N-1} - \gamma_N).$$

Yoonbok Lee (University of Rochester)

Higher Analogue of F

$$F(\boldsymbol{\alpha}; T) = N(T)^{-1} \sum_{0 < \gamma_1, \dots, \gamma_N < T} T^{i \sum_{n=1}^N (\boldsymbol{\alpha} \cdot \boldsymbol{e}_n) \gamma_n} w(\gamma_1 - \gamma_N, \dots, \gamma_{N-1} - \gamma_N).$$

Note that $\alpha \cdot \mathbf{e}_n = \alpha_n$, $1 \le n < N$ and $\alpha \cdot \mathbf{e}_N = -\alpha_1 - \cdots - \alpha_{N-1}$. When $\alpha \cdot \mathbf{e}_n = 0$ for some $1 \le n \le N$, there is no cancelation on the sum over γ_n .

Thus, we expect that $F(\alpha; T)$ has *Spike* along the hyperplanes $\alpha \cdot \mathbf{e}_n = 0, \ 1 \le n \le N$. We write $F^*(\alpha; T)$ for the part of $F(\alpha; T)$ that is supported outside the spikes from the lower correlation terms.

Hypothesis AC on $F(\alpha; T)$

 $F^*(\alpha; T)$: the part of $F(\alpha; T)$ supported outside the spikes from the lower correlation terms.

Hypothesis AC We have $\int_{x_1}^{x_1+1} \cdots \int_{x_{N-1}}^{x_{N-1}+1} |F^*(\alpha; T)| \, d\alpha \ll 1$ uniformly for $(x_1, x_2, \dots, x_{N-1}) \in \mathbb{R}^{N-1}$.

That is, averages of F^* is bounded. When N = 2, Hypothesis AC is known.

Hypothesis AC on $F(\alpha; T)$

 $F^*(\alpha; T)$: the part of $F(\alpha; T)$ supported outside the spikes from the lower correlation terms.

Hypothesis AC We have $\int_{x_1}^{x_1+1} \cdots \int_{x_{N-1}}^{x_{N-1}+1} |F^*(\alpha; T)| \, d\alpha \ll 1$ uniformly for $(x_1, x_2, \dots, x_{N-1}) \in \mathbb{R}^{N-1}$.

That is, averages of F^* is bounded. When N = 2, Hypothesis AC is known.

Let $F_*(\alpha; T) = F(\alpha; T) - F^*(\alpha; T)$. How small F_* is?

Inside the spikes (N = 3)

Let
$$\alpha = (\alpha_1, \alpha_2)$$
. Suppose $\alpha_2 = 0$. Then

$$F(\alpha_1, 0; T) = N(T)^{-1} \sum_{0 < \gamma_1, \gamma_2, \gamma_3 < T} T^{i \alpha_1(\gamma_1 - \gamma_3)} w(\gamma_1 - \gamma_3, \gamma_2 - \gamma_3).$$

Summing over γ_2 , we expect that

$$F(\alpha_1, 0; T) \sim \frac{\log T}{N(T)} \sum_{0 < \gamma_1, \gamma_3 < T} T^{i \alpha_1(\gamma_1 - \gamma_3)} w(\gamma_1 - \gamma_3) = (\log T) F(\alpha_1; T).$$

Since the "spike" term in $F(\alpha_2; T)$ is $(1 + o(1))T^{-2|\alpha_2|} \log T$, we expect that $F(\alpha_1, \alpha_2; T)$ is approximately $T^{-2|\alpha_2|} \log T F(\alpha_1; T)$ when $|\alpha_2| < \log \log T/(2 \log T)$.

The same argument applies when α_1 or $\alpha_1 + \alpha_2$ is near 0.

Hypothesis LC on $F(\alpha; T)$

More generally, $F(\alpha; T)$ degenerates into a lower level sum on the set $S = \bigcup_{n=1}^{N} S_n$, where $S_n = \{ \alpha \in \mathbb{R}^{N-1} \mid \alpha \cdot \mathbf{e}_n = 0 \}$ for $1 \le n \le N$. Define $\eta_n = \{ \mathbf{t} \in \mathbb{R}^{N-1} \mid |\mathbf{t} - \mathbf{y}| < \log \log T / (2 \log T) \text{ for some } \mathbf{y} \in S_n \}$ and $\eta = \bigcup_{n=1}^{N} \eta_n$. Then

Hypothesis LC

$$F(\alpha; T) = F_*(\alpha; T) + F^*(\alpha; T)$$

• $F_*(\alpha; T)$ is supported on η and $F_*(\alpha; T) \ll |F(\widetilde{\alpha}_n; T)| T^{-2|\alpha_n|} \log T$ if $\alpha \in \eta_n$ for some $1 \le n \le N$.

② For any fixed K > 0, $F^*(\alpha; T)$ is bounded on the (N-1)-dimensional cube $[-K, K]^{N-1}$, as $T \to \infty$.

 $\tilde{\alpha}_n$ is obtained from α by deleting α_n for n < N. If n = N, delete any one of $\alpha_1, \ldots, \alpha_{N-1}$.

Higher Analogue of P

To define our analogue of $P(\beta; T)$ let $\mathbf{b} = (b_1, b_2, \dots, b_L)$ with $b_l > 0$ for $1 \le l \le L$. We define $\Lambda_{\mathbf{b}}(n)$ by

$$\prod_{l=1}^{L} \frac{\zeta'}{\zeta} \left(\boldsymbol{s} + \boldsymbol{b}_l \right) = (-1)^L \sum_n \frac{\Lambda_{\mathbf{b}}(n)}{n^{\mathbf{s}}},$$

where $\sigma > 1$. Then

$$\Lambda_{\mathbf{b}}(n) = \sum_{p_{1}^{\nu_{1}} p_{2}^{\nu_{2}} \cdots p_{L}^{\nu_{L}} = n} \frac{\log p_{1} \cdots \log p_{L}}{p_{1}^{b_{1}\nu_{1}} p_{2}^{b_{2}\nu_{2}} \cdots p_{L}^{b_{L}\nu_{L}}}$$

Thus $\Lambda_{\mathbf{b}}(n)$ is supported on those positive integers *n* that are representable as a product of *L*, not necessarily distinct, prime powers.

Higher Analogue of P

We define $R_{\mathbf{b}}(x)$ to be the sum of the residues of

$$\prod_{l=1}^{L} \frac{\zeta'}{\zeta} \left(s + b_l \right) \, \frac{x^s}{s}$$

at the points $s = 1 - b_l$. Next we set

$$\Psi_{\mathbf{b}}(x) = (-1)^L \sum_{n \leq x} \Lambda_{\mathbf{b}}(n),$$

where the prime on the sum indicates that the term $\Lambda_{\mathbf{b}}(x)$ is counted with weight 1/2. We also write

$$\Delta_{\mathbf{b}}(x) = \Psi_{\mathbf{b}}(x) - R_{\mathbf{b}}(x).$$

Thus, $\Delta_{\mathbf{b}}$ measures the difference between $\Psi_{\mathbf{b}}(x)$ and its expected value.

Yoonbok Lee (University of Rochester)

Higher Analogue of P

Now let $\mathbf{a} = (a_1, a_2, \dots, a_N)$ with $a_n > 0$ and $a_n \approx 1/\log T$ as before. Also let $\beta > 0$ and $1 \le J < N$. Writing $\mathbf{a}_J = (a_1, a_2, \dots, a_J)$ and $\mathbf{a}'_J = (a_{J+1}, a_{J+2}, \dots, a_N)$, we set

$$P(\beta, \mathbf{a}, J; T) = \int_{1}^{\infty} \left(\Delta_{\mathbf{a}_{J}} \left(x + \frac{x}{T} \right) - \Delta_{\mathbf{a}_{J}}(x) \right) \left(\Delta_{\mathbf{a}'_{J}} \left(x + \frac{x}{T} \right) - \Delta_{\mathbf{a}'_{J}}(x) \right) \frac{dx}{x^{2+2\beta}}$$

This is our analogue of $P(\beta; T)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equivalence between I and F

Theorem 1

Assume RH, Hypothesis AC, and Hypothesis LC. Let $\mathbf{a} = (a_1, \ldots, a_N)$, where the $a_n \approx 1/\log T$ and are positive, and let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_N)$ consist of $J \ge 0$ ones followed by $K \ge 1$ negative ones. Then

$$I\left(\frac{1}{2},\mathbf{a},\varepsilon;T\right) = T\log^{N}T\int_{U_{N,\varepsilon}}F^{*}(\alpha;T)T^{-\sum_{n\leq N}a_{n}\varepsilon_{n}\alpha_{n}}d\alpha + o(T\log^{N}T),$$

where $U_{N,\varepsilon} = \{(\alpha_1, \ldots, \alpha_{N-1}) \in \mathbb{R}^{N-1} | \epsilon_1 \alpha_1 > 0, \ldots, \epsilon_N \alpha_N > 0\}$ and $\alpha_N = -\sum_{n < N} \alpha_n$.

Equivalence between I and F

Theorem 1

Assume RH, Hypothesis AC, and Hypothesis LC. Let $\mathbf{a} = (a_1, \ldots, a_N)$, where the $a_n \approx 1/\log T$ and are positive, and let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_N)$ consist of $J \ge 0$ ones followed by $K \ge 1$ negative ones. Then

$$I\left(\frac{1}{2}, \mathbf{a}, \varepsilon; T\right) = T \log^N T \int_{U_{N,\varepsilon}} F^*(\alpha; T) T^{-\sum_{n \leq N} a_n \varepsilon_n \alpha_n} d\alpha + o(T \log^N T),$$

where
$$U_{N,\epsilon} = \{(\alpha_1, \ldots, \alpha_{N-1}) \in \mathbb{R}^{N-1} | \epsilon_1 \alpha_1 > 0, \ldots, \epsilon_N \alpha_N > 0\}$$

and $\alpha_N = -\sum_{n < N} \alpha_n$.

When N = 2, $\varepsilon = (1, -1)$, $\mathbf{a} = (A/\log T, A/\log T)$ and $\alpha_2 = -\alpha_1$, we have $U_{2,\varepsilon} = \{\alpha_1 \in \mathbb{R} | \alpha_1 > 0\}, \sum_{n \leq 2} a_n \epsilon_n \alpha_n = 2A\alpha_1/\log T$ and

$$I(1/2, \mathbf{a}, \varepsilon; T) \sim T(\log T)^2 \int_0^\infty F^*(\alpha_1; T) e^{-2A\alpha_1} d\alpha_1.$$

Equivalence between I and F

Corollary 1

With the same hypotheses as in Theorem 1, we have

$$I\left(\frac{1}{2}, \mathbf{a}, \varepsilon; T\right) \ll T \log^N T.$$

Yoonbok Lee (University of Rochester)

Equivalence between I and P

Theorem 2

Assume RH and let $\mathbf{a} = (a_1, a_2, ..., a_N)$ with $a_n = A_n / \log T$ and $A_n > 0$ for $1 \le n \le N$. Also let $1 \le J < N$ and $\varepsilon = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_N)$, where $\varepsilon_1, ..., \varepsilon_J$ are all one, and $\varepsilon_{J+1}, ..., \varepsilon_N$ are all negative one. Then for $1/2 \le \sigma \le 9/10$ we have

$$\int_{-\infty}^{\infty} \left(\prod_{n=1}^{N} \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t)\right) \left(\frac{\sin t/2T}{t}\right)^2 dt$$
$$= \frac{\pi}{2} P\left(\sigma - \frac{1}{2}, \mathbf{a}, J; T\right) + O\left(\frac{\log^{2N+1} T}{T^2}\right).$$

The constant implied by the *O*-term depends on A_1, \ldots, A_N but not on σ, J , or *T*.

Equivalence between I and P

Theorem 3

Assume RH, Hypothesis AC, and Hypothesis LC. Suppose that *C* is fixed and positive, and that $\mathbf{a} = (a_1, \ldots, a_N)$ with $a_n = A_n / \log T$ and each A_n fixed and positive. Define

$$I_{\pm}(\sigma, \mathbf{a}, \varepsilon; T) = \int_{-T}^{T} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t) dt.$$

If there exists a number $f(C, \mathbf{A}, J)$ such that one of the following asymptotic formulas holds, then the other also holds:

$$I_{\pm}\left(rac{1}{2}+rac{C}{\log T},rac{\mathbf{A}}{\log T},arepsilon; T
ight)\sim f(C,\mathbf{A},J) T \log^N T$$
 $P\left(rac{C}{\log T},rac{\mathbf{A}}{\log T},J; T
ight)\sim f(C,\mathbf{A},J) rac{\log^N T}{2T}.$

Yoonbok Lee (University of Rochester)

Recall Theorem 1 ($I \leftrightarrow F$)

Theorem 1

Assume RH, Hypothesis AC, and Hypothesis LC. Let $\mathbf{a} = (a_1, \ldots, a_N)$, where the $a_n \approx 1/\log T$ and are positive, and let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_N)$ consist of $J \ge 0$ ones followed by $K \ge 1$ negative ones. Then

$$I\left(\frac{1}{2},\mathbf{a},\varepsilon;T\right) = T\log^{N}T\int_{U_{N,\varepsilon}}F^{*}(\alpha;T)T^{-\sum_{n\leq N}a_{n}\varepsilon_{n}\alpha_{n}}d\alpha + o(T\log^{N}T),$$

where $U_{N,\varepsilon} = \{(\alpha_1, \ldots, \alpha_{N-1}) \in \mathbb{R}^{N-1} | \epsilon_1 \alpha_1 > 0, \ldots, \epsilon_N \alpha_N > 0\}$ and $\alpha_N = -\sum_{n < N} \alpha_n$.

Yoonbok Lee (University of Rochester)

Assume RH.

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} e^{-\delta n} + \sum_{\rho} \delta^{s-\rho} \Gamma(\rho-s) + O(\delta^{\sigma-1/4} \log t)$$

uniformly for $e^{-\sqrt{t}} \le \delta \le 1$ and $\frac{1}{2} \le \sigma \le \frac{9}{8}$.

Lemma 1

Assume RH. Let $X = (\log T)^{4/3}$, $a \approx 1/\log T$ with a > 0, and $\varepsilon = \pm 1$. Then for |t| < T we have

$$\frac{\zeta'}{\zeta}(\frac{1}{2}+a+i\varepsilon t)=-\sum_{\gamma}R(-a+i\varepsilon(\gamma-t))+O(X^{1/2}),$$

where $R(z) = X^{z}\Gamma(z)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall the definition of *I* :

$$I(\sigma, \mathbf{a}, \varepsilon; T) = \int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t) dt.$$

By Lemma 1, we have

$$I\left(\frac{1}{2},\mathbf{a},\varepsilon;T\right) = (-1)^{N} M(\mathbf{a},\varepsilon;T) + O(T(\log T)^{N-1/3}),$$

where

$$M(\mathbf{a},\varepsilon; T) = \int_{0}^{T} \prod_{n=1}^{N} \left(\sum_{\gamma_n} R(-a_n + i\varepsilon_n(\gamma_n - t)) \right) dt.$$

Truncate the sums of γ_n 's, and extend the integral from $-\infty$ to ∞ . Then

$$M(\mathbf{a},\varepsilon;T) = \sum_{0 < \gamma_1, \dots, \gamma_N < T} \int_{-\infty}^{\infty} \prod_{n=1}^{N} R(-a_n + i\varepsilon_n(\gamma_n - t)) dt + O((\log T)^B)$$

Yoonbok Lee (University of Rochester)

Change the variable $t \rightarrow t + \gamma_N$, then

$$M(\mathbf{a},\varepsilon;T) = \sum_{0<\gamma_1,...,\gamma_N
$$+ O((\log T)^B)$$
$$= \sum_{0<\gamma_1,...,\gamma_N$$$$

where $L = (1/2\pi) \log T$, $\widetilde{\gamma}_j = \gamma_j L$ and

$$\mathcal{R}(\mathbf{u}) = \int_{-\infty}^{\infty} \prod_{n=1}^{N} R(-a_n + i\varepsilon_n(u_n/L - t)) dt$$

for $\mathbf{u} = (u_1, ..., u_{N-1})$ and $u_N = 0$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We define $r(\mathbf{u}) = \mathcal{R}(\mathbf{u})w(\mathbf{u}/L)^{-1}$ and $w(\mathbf{x}) = \prod_{n=1}^{N-1} \frac{4}{4+x_n^2}$. Then

$$M(\mathbf{a}, \varepsilon; T) \sim \sum_{0 < \gamma_1, \dots, \gamma_N < T} r(\widetilde{\gamma}_1 - \widetilde{\gamma}_N, \dots, \widetilde{\gamma}_{N-1} - \widetilde{\gamma}_N) w(\gamma_1 - \gamma_N, \dots, \gamma_{N-1} - \gamma_N).$$

Since

$$r(\widetilde{\gamma}_{1}-\widetilde{\gamma}_{N},...,\widetilde{\gamma}_{N-1}-\widetilde{\gamma}_{N}) = \int_{\mathbb{R}^{N-1}} \widehat{r}(\alpha) e^{2\pi i \sum_{n < N} \alpha_{n}(\widetilde{\gamma}_{n}-\widetilde{\gamma}_{N})} d\alpha$$
$$= \int_{\mathbb{R}^{N-1}} \widehat{r}(\alpha) T^{i \sum_{n < N} \alpha_{n}(\gamma_{n}-\gamma_{N})} d\alpha,$$

we have

$$M(\mathbf{a},arepsilon;T)\sim N(T)\int\limits_{\mathbb{R}^{N-1}}F(lpha;T)\,\widehat{r}(lpha)\,dlpha.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$I\left(\frac{1}{2},\mathbf{a},\varepsilon; T\right) = (-1)^N N(T) \int_{\mathbb{R}^{N-1}} F(\alpha;T) \,\widehat{r}(\alpha) \, d\alpha + O(T \, L^{N-1/3})$$

Our next task is to find a useful expression for $\hat{r}(\alpha)$.

э

• • • • • • • • • • • • •

$$I\left(\frac{1}{2},\mathbf{a},\varepsilon; T\right) = (-1)^N N(T) \int_{\mathbb{R}^{N-1}} F(\alpha;T) \,\widehat{r}(\alpha) \, d\alpha + O(T \, L^{N-1/3})$$

Our next task is to find a useful expression for $\hat{r}(\alpha)$.

$$\widehat{r}(\alpha) = \int_{\mathbb{R}^{N-1}} r(\mathbf{u}) e^{-2\pi i \alpha \cdot \mathbf{u}} d\mathbf{u}$$

$$= \int_{\mathbb{R}^{N-1}} \mathcal{R}(\mathbf{u}) \prod_{n=1}^{N-1} \left(1 + \frac{u_n^2}{4L^2}\right) e^{-2\pi i \alpha \cdot \mathbf{u}} d\mathbf{u}$$

$$= \int_{\mathbb{R}^{N-1}} \prod_{n=1}^{N-1} \left(1 - \frac{1}{16\pi^2 L^2} \frac{\partial^2}{\partial \alpha_n^2}\right) \mathcal{R}(\mathbf{u}) e^{-2\pi i \alpha \cdot \mathbf{u}} d\mathbf{u}$$

$$= \prod_{n=1}^{N-1} \left(1 - \frac{1}{16\pi^2 L^2} \frac{\partial^2}{\partial \alpha_n^2}\right) \widehat{\mathcal{R}}(\alpha).$$

Yoonbok Lee (University of Rochester)

$$\widehat{\mathcal{R}}(\alpha) = \int_{\mathbb{R}^{N-1}} \int_{-\infty}^{\infty} \left(\prod_{n=1}^{N} R(-a_n + i\varepsilon_n (u_n/L - t)) e^{-2\pi i\alpha_n u_n} \right) dt \, d\mathbf{u}$$
$$= \int_{\mathbb{R}^{N-1}} \int_{-\infty}^{\infty} R(-a_N - i\varepsilon_N t) \left(\prod_{n=1}^{N-1} R(-a_n + i\varepsilon_n u_n/L) e^{-2\pi i\alpha_n (u_n + Lt)} \right) dt \, d\mathbf{u}$$

by the substitutions $u_n \rightarrow u_n + tL$ for n < N. Since $R(z) = X^z \Gamma(z)$, we can apply Lemma 2 to above equation.

Lemma 2

Let 0 < a < 1, $A \in \mathbb{R}$, and $\varepsilon = \pm 1$. Then

$$\int_{-\infty}^{\infty} e^{iA\xi} \, \Gamma(-a+i\varepsilon\xi) \, d\xi = 2\pi \, e^{\varepsilon aA} \, (e^{-e^{-\varepsilon A}}-1).$$

Yoonbok Lee (University of Rochester)

э

イロト イヨト イヨト イヨト

Recall Theorem 2 ($I \leftrightarrow P$)

Theorem 2

Assume RH and let $\mathbf{a} = (a_1, a_2, ..., a_N)$ with $a_n = A_n / \log T$ and $A_n > 0$ for $1 \le n \le N$. Also let $1 \le J < N$ and $\varepsilon = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_N)$, where $\varepsilon_1, ..., \varepsilon_J$ are all one, and $\varepsilon_{J+1}, ..., \varepsilon_N$ are all negative one. Then for $1/2 \le \sigma \le 9/10$ we have

$$\int_{-\infty}^{\infty} \left(\prod_{n=1}^{N} \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t)\right) \left(\frac{\sin t/2T}{t}\right)^2 dt$$
$$= \frac{\pi}{2} P\left(\sigma - \frac{1}{2}, \mathbf{a}, J; T\right) + O\left(\frac{\log^{2N+1} T}{T^2}\right).$$

The constant implied by the *O*-term depends on A_1, \ldots, A_N but not on σ, J , or *T*.

Lemma 3

Assume RH. Suppose that $|b_l| < \frac{1}{10}$ with $\operatorname{Re} b_l > 0$. Then for $\frac{1}{2} \le \sigma_0 \le \frac{9}{10}$,

$$\Psi_{\mathbf{b}}(x) = (-1)^{N} \sum_{n \leq x} \Lambda_{\mathbf{b}}(n) = R_{\mathbf{b}}(x) + \frac{1}{2\pi i} \int_{\sigma_{0} - i\infty}^{\sigma_{0} + i\infty} \prod_{l=1}^{L} \frac{\zeta'}{\zeta} (s + b_{l}) \frac{x^{s}}{s} ds,$$

where $R_{\mathbf{b}}(x)$ is the sum of the residues of

$$\prod_{l=1}^{L} \frac{\zeta'}{\zeta} \left(s + b_l \right) \, \frac{x^s}{s}$$

at the points $s = 1 - b_l$.

Lemma 3 holds by Perron's formula.

Yoonbok Lee (University of Rochester)

Recalling that $\Delta_{\mathbf{a}_J}(x) = (-1)^N \sum_{n \leq x}' \Lambda_{\mathbf{a}_J}(n) - R_{\mathbf{a}_J}(x)$, we see from Lemma 3 that

$$\frac{\Delta_{\mathbf{a}_{J}}(e^{\tau+\delta}) - \Delta_{\mathbf{a}_{J}}(e^{\tau})}{e^{\sigma\tau}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \prod_{j=1}^{J} \frac{\zeta'}{\zeta} (\sigma + a_{j} + it) \left(\frac{e^{\delta(\sigma+it)} - 1}{\sigma+it}\right) e^{-2\pi it(-\tau/2\pi)} dt$$

for $\frac{1}{2} \le \sigma \le \frac{9}{10}$. This expresses the left-hand side as a Fourier transform.

Yoonbok Lee (University of Rochester)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We use Plancherel's formula in the form

$$\int_{-\infty}^{\infty} \widehat{f}(\tau) \widehat{g}(\tau) d\tau = \int_{-\infty}^{\infty} f(t) g(-t) dt,$$

where

$$\widehat{f}(au) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i t au} dt$$

and similarly for \hat{g} . Then we obtain

$$\int_{-\infty}^{\infty} \left(\Delta_{\mathbf{a}_{J}}(\boldsymbol{e}^{\tau+\delta}) - \Delta_{\mathbf{a}_{J}}(\boldsymbol{e}^{\tau}) \right) \left(\Delta_{\mathbf{a}_{J}'}(\boldsymbol{e}^{\tau+\delta}) - \Delta_{\mathbf{a}_{J}'}(\boldsymbol{e}^{\tau}) \right) \boldsymbol{e}^{-2\sigma\tau} d\tau$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} (\sigma + a_{n} + i\varepsilon_{n}t) \left| \frac{\boldsymbol{e}^{\delta(\sigma+it)} - 1}{\sigma + it} \right|^{2} dt.$$

Compare it with the definition $P(\beta, \mathbf{a}, J; T) = \int_{1}^{\infty} \left(\Delta_{\mathbf{a}_{J}} \left(x + \frac{x}{T} \right) - \Delta_{\mathbf{a}_{J}}(x) \right) \left(\Delta_{\mathbf{a}_{J}'} \left(x + \frac{x}{T} \right) - \Delta_{\mathbf{a}_{J}'}(x) \right) dx$

Yoonbok Lee (University of Rochester)

Aug 21, 2012 31 / 41

Recall Theorem 3 ($I \leftrightarrow P$)

Theorem 3

Assume RH, Hypothesis AC, and Hypothesis LC. Suppose that *C* is fixed and positive, and that $\mathbf{a} = (a_1, \ldots, a_N)$ with $a_n = A_n / \log T$ and each A_n fixed and positive. Define

$$I_{\pm}(\sigma, \mathbf{a}, \varepsilon; T) = \int_{-T}^{T} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} (\sigma + a_n + i\varepsilon_n t) dt.$$

If there exists a number $f(C, \mathbf{A}, J)$ such that one of the following asymptotic formulas holds, then the other also holds:

$$\begin{split} I_{\pm} \left(\frac{1}{2} + \frac{C}{\log T}, \frac{\mathbf{A}}{\log T}, \varepsilon; T \right) &\sim f(C, \mathbf{A}, J) \ T \ \log^N T \\ P \left(\frac{C}{\log T}, \frac{\mathbf{A}}{\log T}, J; T \right) &\sim f(C, \mathbf{A}, J) \ \frac{\log^N T}{2T}. \end{split}$$

Yoonbok Lee (University of Rochester)

The first asymptotic formula of Theorem 3 is

$$I_{\pm}\left(\frac{1}{2} + \frac{C}{\log T}, \frac{\mathbf{A}}{\log T}, \varepsilon; T\right) = \int_{-T}^{T} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{C + A_n}{\log T} + i\varepsilon_n t\right) dt$$
$$= 2 \int_{0}^{T} \operatorname{Re} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{C + A_n}{\log T} + i\varepsilon_n t\right) dt$$
$$\sim f(C, \mathbf{A}, J) T \log^N T.$$

Define

$$g(t,\eta) = 2\operatorname{Re} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} \Big(\frac{1}{2} + \frac{C + A_n}{\log \eta} + i\varepsilon_n t \Big) \Big/ \big(f(C, \mathbf{A}, J) \log^N \eta \big).$$

Then it is

$$\int_0^T g(t,T) dt \sim T.$$

э

イロト イヨト イヨト イヨト

The second asymptotic formula of Theorem 3 is, by Theorem 2,

$$P\left(\frac{C}{\log T}, \frac{\mathbf{A}}{\log T}, J; T\right)$$

$$\sim \int_{-\infty}^{\infty} \left(\prod_{n=1}^{N} \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{C + A_n}{\log T} + i\varepsilon_n t\right)\right) \left(\frac{\sin t/2T}{t}\right)^2 dt$$

$$= 2 \int_{0}^{\infty} \left(\operatorname{Re} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{C + A_n}{\log T} + i\varepsilon_n t\right)\right) \left(\frac{\sin t/2T}{t}\right)^2 dt$$

$$\sim f(C, \mathbf{A}, J) \frac{\log^N T}{2T}$$

and it is equivalent to

$$\int_0^\infty g(t,T) \left(\frac{\sin t/2T}{t}\right)^2 dt \sim \frac{\pi}{2} \frac{1}{2T}.$$

Yoonbok Lee (University of Rochester)

• • • • • • • • • • • • •

Therefore, Theorem 3 is to show the equivalence of two asymptotic formulas

$$\int_0^T g(t,T) dt \sim T$$

and

$$\int_0^\infty g(t,T) \left(\frac{\sin t/2T}{t}\right)^2 dt \sim \frac{\pi}{2} \frac{1}{2T},$$

where

$$g(t,\eta) = 2\operatorname{Re} \prod_{n=1}^{N} \frac{\zeta'}{\zeta} \Big(\frac{1}{2} + \frac{C + A_n}{\log \eta} + i\varepsilon_n t \Big) \Big/ \big(f(C, \mathbf{A}, J) \log^N \eta \big).$$

Yoonbok Lee (University of Rochester)

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

We appeal to modified versions of two Lemmas in Goldston's paper. These concern the equivalence under certain conditions of

$$\int_0^T g(t,\eta) dt \sim T \tag{1}$$

as $\mathcal{T} o \infty$, and $\int_0^\infty g(t,\eta) \left(rac{\sin \kappa t}{t}
ight)^2 dt \sim rac{\pi}{2} \kappa$

as $\kappa \rightarrow 0+$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(2)

We appeal to modified versions of two Lemmas in Goldston's paper. These concern the equivalence under certain conditions of

$$\int_0^T g(t,\eta) dt \sim T \tag{1}$$

as $T \to \infty$, and

$$\int_0^\infty g(t,\eta) \left(\frac{\sin\kappa t}{t}\right)^2 dt \sim \frac{\pi}{2}\kappa$$

as $\kappa \rightarrow 0+$. First we see $1 \rightarrow 2$.

Lemma $1 \rightarrow 2$

Let $g(t, \eta)$ be a continuous function of t and η for $t \ge 0$ and $\eta \ge 2$. Suppose that $g(t, \eta) \ll \log^{N}(t+2)$ and that $\int_{0}^{T} |g(t, \eta)|^{2} dt \ll T$ holds for $\eta \log^{-N-1} \eta \le T \le \eta \log^{N+1} \eta$. If (1) holds uniformly for $\eta \log^{-N-1} \eta \le T \le \eta \log^{N+1} \eta$, then (2) holds for $\eta \approx 1/\kappa$.

(2)

To apply Lemma $1 \rightarrow 2$, we should prove that

$$\int_0^T g(t,T) dt \sim T$$

implies

$$\int_0^T g(t,\eta) dt \sim T$$

holds uniformly for
$$\eta \log^{-N-1} \eta \leq T \leq \eta \log^{N+1} \eta$$
.

イロト イポト イヨト イヨト

To apply Lemma 1 \rightarrow 2, we should prove that

$$\int_0^T g(t,T) dt \sim T$$

implies

$$\int_0^T g(t,\eta) dt \sim T$$

holds uniformly for $\eta \log^{-N-1} \eta \leq T \leq \eta \log^{N+1} \eta$. It is proved by

Lemma

Assume RH, Hypothesis AC, and Hypothesis LC. Let B_1, \ldots, B_N be fixed positive real numbers. Suppose that $\eta \log^{-N-2} \eta \le T \le \eta \log^{N+2} \eta$. Then we have $\int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_n}{\log \eta} + i\varepsilon_n t \right) dt =$ $\int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_n}{\log T} + i\varepsilon_n t \right) dt + O(T \log^{N-1} T \log \log T).$

Lemma

Assume RH, Hypothesis AC, and Hypothesis LC. Let B_1, \ldots, B_N be fixed positive real numbers. Suppose that $\eta \log^{-N-2} \eta \le T \le \eta \log^{N+2} \eta$. Then we have $\int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_n}{\log \eta} + i\varepsilon_n t\right) dt = \int_0^T \prod_{n=1}^N \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_n}{\log T} + i\varepsilon_n t\right) dt + O(T \log^{N-1} T \log \log T).$

We use the fact

$$\log \eta = \log T + O(\log \log T)$$

and the following consequence of Corollary 1 : Under RH, AC and LC we have

$$\int_0^T \left| \prod_{j \le J} \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_j}{\log T} + it \right) \right|^2 dt \ll T (\log T)^{2J}.$$

For the converse, we need the followings:

$$\int_0^T g(t,\eta) dt \sim T \tag{3}$$

as $T \to \infty$, and $\int_{0}^{\infty} g(t,\eta) \left(\frac{\sin \kappa t}{t}\right)^{2} dt \sim \frac{\pi}{2} \kappa$ (4)

as $\kappa \rightarrow 0+$.

$Lemma \; 4 \to 3$

Let $g(t,\eta)$ be a continuous function of t and η for $t \ge 0$ and $\eta \ge 2$. Suppose that $g(t,\eta) \ll \log^{N}(t+2)$ and that $\int_{0}^{T} |g(t,\eta)|^{2} dt \ll T$ holds for $\eta \log^{-N-1} \eta \le T \le \eta \log^{N+1} \eta$. Conversely, if (4) holds uniformly for $\eta^{-1} \log^{-N-1} \eta \le \kappa \le \eta^{-1} \log^{N+1} \eta$, then (3) holds for $\eta \approx T$.

э.

We also need

Lemma

Assume RH, Hypothesis AC, and Hypothesis LC. Let B_1, \ldots, B_N be fixed positive real numbers. Suppose that $\eta \log^{-N-2} \eta \le T \le \eta \log^{N+2} \eta$. Then we have $\int_0^\infty \prod_{n=1}^N \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_n}{\log \eta} + i\varepsilon_n t\right) \left(\frac{\sin t/2T}{t}\right)^2 dt = \int_0^\infty \prod_{n=1}^N \frac{\zeta'}{\zeta} \left(\frac{1}{2} + \frac{B_n}{\log T} + i\varepsilon_n t\right) \left(\frac{\sin t/2T}{t}\right)^2 dt + O(T^{-1} \log^{N-1} T \log \log T).$

By the similar argument to 1 \rightarrow 2, we can complete the proof of Theorem 3.

THANK YOU.

2

イロト イヨト イヨト イヨト