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The Riemann zeta function ζ(s)

1 On Re s > 1,

ζ(s) =
∞∑

n=1

n−s =
∏

p

(1− p−s)−1.

2 Analytic continuation to C \ {1}.
3 Functional equation ξ(s) := s(s−1)

2 π−
s
2 Γ( s

2)ζ(s) = ξ(1− s).

4 No zeros outside of the critical strip 0 < Re s < 1 except trivial
zeros −2,−4,−6, . . . .

Riemann Hypothesis
All the nontrivial zeros of ζ(s) are on the critical line Re s = 1/2.

In this talk, we assume RH!
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Pair Correlation of zeros of ζ(s)

Assume RH. Define

F (α,T ) = (
T
2π

log T )−1
∑

0<γ,γ′<T

T iα(γ−γ′)w(γ − γ′),

where 1/2 + iγ and 1/2 + iγ′ are zeros of ζ(s)
and w(u) = 4/(4 + u2) is a weight function.

Then
1 F (α,T ) is even.
2 F (α,T ) is nonnegative.

Since w(γ − γ′) = 2/π
∫∞
−∞

dt
(1+(t−γ)2)(1+(t−γ′)2)

, we see that

F (α,T ) =
4

T log T

∫ ∞
−∞

∣∣∣∣∣∣
∑

0<γ<T

T iαγ

1 + (t − γ)2

∣∣∣∣∣∣
2

dt ≥ 0.
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Theorem[Montgomery]
Assume RH. For |α| ≤ 1, we have
F (α,T ) = |α|+ o(1) + T−2|α| log T (1 + o(1)).

Conjecture 1
F (α,T ) = 1 + o(1) for α > 1.

Spike
Difficulty of Conjecture 1
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F (α,T )

Assume RH and let

G(α,T ) = (
T
2π

log T )−1
∑

0<γ,γ′<T

(
sin α

2 (γ − γ′) log T
α
2 (γ − γ′) log T

)2

w(γ − γ′).

Theorem[Montgomery]

For 0 < α ≤ 1, we have G(α,T ) ∼ 1
α + α

3 .

Theorem[Goldston, Gonek] 1990
For a > 0, β real, and T ≥ 2,
a
(
a− 1

2G
(a

2 ,T
))
≤
∫ β+a
β F (α,T )dα ≤ a

(
G(a,T ) + 1

2G
(a

2 ,T
))
.

As a consequence,
∫ β+1
β F (α,T )dα is bounded.
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Sketched proof of Montgomery’s Theorem
Assume RH and let
G(α,T ) = ( T

2π log T )−1∑
0<γ,γ′<T

(
sin α

2 (γ−γ′) log T
α
2 (γ−γ′) log T

)2
w(γ − γ′).

Theorem[Montgomery]

For 0 < α ≤ 1, we have G(α,T ) ∼ 1
α + α

3 .

(Sketched proof) If r̂ is the Fourier transform of r , then
r(u) =

∫∞
−∞ r̂(v)e2πiuv dv .

Thus, we have∑
0<γ,γ′<T r((γ − γ′)(2π)−1 log T )w(γ − γ′)

=
∑

0<γ,γ′<T (
∫∞
−∞ r̂(v)T i(γ−γ′)v dv)w(γ − γ′)

= (2π)−1T log T
∫∞
−∞ F (v ,T )r̂(v)dv .

Choose r(u) = ((sinπαu)/παu)2, then (LHS) = ( T
2π log T )G(α,T ) and∫ ∞

−∞
F (v ,T )r̂(v)dv =

1
v2

∫ α

−α
(α− |v |)F (v ,T )dv .
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Goldston, Gonek and Montgomery’s work
Let ψ(x) =

∑
n≤x Λ(n), where Λ(n) = log p if n is a prime power pk and

Λ(n) = 0 otherwise. Define

I(σ,T ) =

∫ T

1

∣∣ζ ′/ζ(σ + it)
∣∣2 dt

P(β,T ) =

∫ ∞
1

(ψ(x + x/T )− ψ(x)− x/T )2x−2−2βdx

Note that PNT says ψ(x) ∼ x . Assume RH and suppose A > 0 is fixed.
If there exists a number f (A) such that one of the following asymptotic
formulas is true as T →∞, then all of them are true:

I
(

1
2

+
A

log T
; T
)
∼f (A) T log2 T ,∫ ∞

0+

F (α; T )e−2Aαdα ∼f (A),

P
(

A
log T

; T
)
∼f (A)

log2 T
T

.
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Higher Analogue of I

N = J + K ≥ 2, J ≥ 0,K ≥ 1.
ε = (ε1, ε2, . . . , εN), εj = 1 for j ≤ J, εj = −1 for J < j ≤ J + K = N.
a = (a1,a2, . . . ,aN) with an > 0 and an ≈ 1/ log T for 1 ≤ n ≤ N.
Here an ≈ 1/ log T means there exist constants 0 < An ≤ A

′
n such that

An/ log T ≤ |an| ≤ A
′
n/ log T .

Our generalization of the mean value I(σ; T ) is

I(σ, a, ε; T ) =

∫ T

0

N∏
n=1

ζ ′

ζ
(σ + an + iεnt) dt .

When N = 2, ε = (1,−1) and a = (a,a), we have

I(σ, a, ε; T ) =

∫ T

0

∣∣∣∣ζ ′ζ (σ + a + it)
∣∣∣∣2 dt .
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Higher Analogue of F

Let α = (α1, ..., αN−1) with αn ∈ R.
Our generalization of F (α; T ) is

F (α; T ) = N(T )−1
∑

0<γ1,...,γN<T

T i
∑

n<N αn(γn−γN)w(γ1−γN , ..., γN−1−γN)

where N(T ) is the number of zeros β + iγ of ζ(s) with 0 < γ < T and
w(x1, . . . , xN−1) =

∏N−1
n=1

4
4+x2

n
is a weight function. Note that

N(T ) ∼ T
2π log T .

Let en = (0, . . . ,1, . . . ,0) for 1 ≤ n < N and eN = (−1, . . . ,−1). Then
α · en = αn, 1 ≤ n < N and α · eN = −α1 − · · · − αN−1 and

F (α; T ) = N(T )−1
∑

0<γ1,...,γN<T

T i
∑N

n=1(α·en)γnw(γ1 − γN , ..., γN−1 − γN).
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Higher Analogue of F

F (α; T ) = N(T )−1
∑

0<γ1,...,γN<T

T i
∑N

n=1(α·en)γnw(γ1 − γN , ..., γN−1 − γN).

Note that α · en = αn, 1 ≤ n < N and α · eN = −α1 − · · · − αN−1.
When α · en = 0 for some 1 ≤ n ≤ N, there is no cancelation on the
sum over γn.
Thus, we expect that F (α; T ) has Spike along the hyperplanes
α · en = 0, 1 ≤ n ≤ N.
We write F ∗(α; T ) for the part of F (α; T ) that is supported outside the
spikes from the lower correlation terms.
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Hypothesis AC on F (α; T )

F ∗(α; T ) : the part of F (α; T ) supported outside the spikes from the
lower correlation terms.

Hypothesis AC
We have ∫ x1+1

x1

· · ·
∫ xN−1+1

xN−1

|F ∗(α; T )|dα� 1

uniformly for (x1, x2, . . . , xN−1) ∈ RN−1.

That is, averages of F ∗ is bounded. When N = 2, Hypothesis AC is
known.

Let F∗(α; T ) = F (α; T )− F ∗(α; T ). How small F∗ is?
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Inside the spikes ( N = 3 )

Let α = (α1, α2). Suppose α2 = 0. Then

F (α1,0; T ) = N(T )−1
∑

0<γ1,γ2,γ3<T

T i α1(γ1−γ3)w(γ1 − γ3, γ2 − γ3).

Summing over γ2, we expect that

F (α1,0; T ) ∼ log T
N(T )

∑
0<γ1,γ3<T

T i α1(γ1−γ3)w(γ1 − γ3) = (log T )F (α1; T ).

Since the “spike” term in F (α2; T ) is (1 + o(1))T−2|α2| log T ,
we expect that F (α1, α2; T ) is approximately T−2|α2| log T F (α1; T )
when |α2| ≤ log log T/(2 log T ).
The same argument applies when α1 or α1 + α2 is near 0.
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Hypothesis LC on F (α; T )

More generally, F (α; T ) degenerates into a lower level sum on the set
S =

⋃N
n=1 Sn, where Sn =

{
α ∈ RN−1 | α · en = 0

}
for 1 ≤ n ≤ N.

Define ηn = {t ∈ RN−1 | |t− y| < log log T/(2 log T ) for some y ∈ Sn}
and η =

⋃N
n=1 ηn. Then

Hypothesis LC
F (α; T ) = F∗(α; T ) + F ∗(α; T )

1 F∗(α; T ) is supported on η and
F∗(α; T )� |F (α̃n; T )|T−2|αn| log T
if α ∈ ηn for some 1 ≤ n ≤ N.

2 For any fixed K > 0, F ∗(α; T ) is bounded on the
(N − 1)-dimensional cube [−K ,K ]N−1, as T →∞.

α̃n is obtained from α by deleting αn for n < N. If n = N, delete any
one of α1, . . . , αN−1.
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Higher Analogue of P

To define our analogue of P(β; T ) let b = (b1,b2, . . . ,bL) with bl > 0 for
1 ≤ l ≤ L. We define Λb(n) by

L∏
l=1

ζ ′

ζ
(s + bl) = (−1)L

∑
n

Λb(n)

ns ,

where σ > 1. Then

Λb(n) =
∑

p
ν1
1 p

ν2
2 ··· p

νL
L =n

log p1 · · · log pL

pb1ν1
1 pb2ν2

2 · · · pbLνL
L

Thus Λb(n) is supported on those positive integers n that are
representable as a product of L, not necessarily distinct, prime powers.
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Higher Analogue of P
We define Rb(x) to be the sum of the residues of

L∏
l=1

ζ ′

ζ
(s + bl)

xs

s

at the points s = 1− bl . Next we set

Ψb(x) = (−1)L
∑
n≤x

′
Λb(n),

where the prime on the sum indicates that the term Λb(x) is counted
with weight 1/2. We also write

∆b(x) = Ψb(x)− Rb(x).

Thus, ∆b measures the difference between Ψb(x) and its expected
value.
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Higher Analogue of P

Now let a = (a1,a2, . . . ,aN) with an > 0 and an ≈ 1/ log T as before.
Also let β > 0 and 1 ≤ J < N. Writing aJ = (a1,a2, . . . ,aJ) and
a′J = (aJ+1,aJ+2, . . . ,aN), we set

P(β,a, J; T ) =

=

∫ ∞
1

(
∆aJ

(
x +

x
T

)
−∆aJ (x)

)(
∆a′J

(
x +

x
T

)
−∆a′J

(x)
) dx

x2+2β .

This is our analogue of P(β; T ) .
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Equivalence between I and F
Theorem 1
Assume RH, Hypothesis AC, and Hypothesis LC. Let a = (a1, . . . ,aN),
where the an ≈ 1/ log T and are positive, and let ε = (ε1, . . . , εN)
consist of J ≥ 0 ones followed by K ≥ 1 negative ones. Then

I
(1

2
,a, ε; T

)
= T logN T

∫
UN,ε

F ∗(α; T ) T−
∑

n≤N anεnαn dα+ o(T logN T ),

where UN,ε = {(α1, . . . , αN−1) ∈ RN−1|ε1α1 > 0, . . . , εNαN > 0}
and αN = −

∑
n<N αn.

When N = 2, ε = (1,−1), a = (A/ log T ,A/ log T ) and α2 = −α1, we
have U2,ε = {α1 ∈ R|α1 > 0},

∑
n≤2 anεnαn = 2Aα1/ log T and

I(1/2,a, ε; T ) ∼ T (log T )2
∫ ∞

0
F ∗(α1; T )e−2Aα1dα1.
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Equivalence between I and F

Corollary 1
With the same hypotheses as in Theorem 1, we have

I
(1

2
,a, ε; T

)
� T logN T .
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Equivalence between I and P

Theorem 2
Assume RH and let a = (a1,a2, . . . ,aN) with an = An/ log T and
An > 0 for 1 ≤ n ≤ N. Also let 1 ≤ J < N and ε = (ε1, ε2, . . . , εN),
where ε1, . . . , εJ are all one, and εJ+1, . . . , εN are all negative one.
Then for 1/2 ≤ σ ≤ 9/10 we have

∞∫
−∞

( N∏
n=1

ζ ′

ζ
(σ + an + iεnt)

)(
sin t/2T

t

)2

dt

=
π

2
P
(
σ − 1

2
,a, J; T

)
+ O

(
log2N+1 T

T 2

)
.

The constant implied by the O-term depends on A1, . . . ,AN but not on
σ, J, or T .
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Equivalence between I and P
Theorem 3
Assume RH, Hypothesis AC, and Hypothesis LC. Suppose that C is
fixed and positive, and that a = (a1, . . . ,aN) with an = An/ log T and
each An fixed and positive. Define

I±(σ, a, ε; T ) =

T∫
−T

N∏
n=1

ζ ′

ζ
(σ + an + iεnt) dt .

If there exists a number f (C,A, J) such that one of the following
asymptotic formulas holds, then the other also holds:

I±

(
1
2

+
C

log T
,

A
log T

, ε; T
)
∼ f (C,A, J) T logN T ,

P
(

C
log T

,
A

log T
, J; T

)
∼ f (C,A, J)

logN T
2T

.
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Recall Theorem 1 (I ↔ F )

Theorem 1
Assume RH, Hypothesis AC, and Hypothesis LC. Let a = (a1, . . . ,aN),
where the an ≈ 1/ log T and are positive, and let ε = (ε1, . . . , εN)
consist of J ≥ 0 ones followed by K ≥ 1 negative ones. Then

I
(1

2
,a, ε; T

)
= T logN T

∫
UN,ε

F ∗(α; T ) T−
∑

n≤N anεnαn dα+ o(T logN T ),

where UN,ε = {(α1, . . . , αN−1) ∈ RN−1|ε1α1 > 0, . . . , εNαN > 0}
and αN = −

∑
n<N αn.
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Proof of Theorem 1

Assume RH.

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns e−δn +
∑
ρ

δs−ρΓ(ρ− s) + O(δσ−1/4 log t)

uniformly for e−
√

t ≤ δ ≤ 1 and 1
2 ≤ σ ≤

9
8 .

Lemma 1
Assume RH. Let X = (log T )4/3, a ≈ 1/ log T with a > 0, and ε = ±1.
Then for |t | < T we have

ζ ′

ζ
(1

2 + a + iεt) = −
∑
γ

R(−a + iε(γ − t)) + O(X 1/2),

where R(z) = X zΓ(z).

Yoonbok Lee (University of Rochester) Correlations of Zeros Aug 21, 2012 22 / 41



Proof of Theorem 1
Recall the definition of I :

I(σ, a, ε; T ) =

∫ T

0

N∏
n=1

ζ ′

ζ
(σ + an + iεnt) dt .

By Lemma 1, we have

I
(1

2
,a, ε; T

)
= (−1)NM(a, ε; T ) + O(T (log T )N−1/3),

where

M(a, ε; T ) =

T∫
0

N∏
n=1

(∑
γn

R(−an + iεn(γn − t))

)
dt .

Truncate the sums of γn’s, and extend the integral from −∞ to∞. Then

M(a, ε; T ) =
∑

0<γ1,...,γN<T

∞∫
−∞

N∏
n=1

R(−an + iεn(γn − t)) dt + O((log T )B)
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Proof of Theorem 1

Change the variable t → t + γN , then

M(a, ε; T ) =
∑

0<γ1,...,γN<T

∞∫
−∞

N∏
n=1

R(−an + iεn(γn − γN − t)) dt

+ O((log T )B)

=
∑

0<γ1,...,γN<T

R
(
γ̃1 − γ̃N , ..., γ̃N−1 − γ̃N

)
+ O((log T )B),

where L = (1/2π) log T , γ̃j = γjL and

R(u) =

∞∫
−∞

N∏
n=1

R(−an + iεn(un/L− t)) dt

for u = (u1, . . . ,uN−1) and uN = 0.
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Proof of Theorem 1
We define r(u) = R(u)w(u/L)−1 and w(x) =

∏N−1
n=1

4
4+x2

n
. Then

M(a, ε; T ) ∼
∑

0<γ1,...,γN<T

r(γ̃1−γ̃N , ..., γ̃N−1−γ̃N)w(γ1−γN , . . . , γN−1−γN).

Since

r(γ̃1 − γ̃N , ..., γ̃N−1 − γ̃N) =

∫
RN−1

r̂(α)e2πi
∑

n<N αn(γ̃n−γ̃N)dα

=

∫
RN−1

r̂(α)T i
∑

n<N αn(γn−γN)dα,

we have
M(a, ε; T ) ∼ N(T )

∫
RN−1

F (α; T ) r̂(α) dα.
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Proof of Theorem 1

I
(1

2
,a, ε; T

)
= (−1)NN(T )

∫
RN−1

F (α; T ) r̂(α) dα+ O(T LN−1/3)

Our next task is to find a useful expression for r̂(α).

r̂(α) =

∫
RN−1

r(u)e−2πiα·u du

=

∫
RN−1

R(u)
N−1∏
n=1

(
1 +

u2
n

4L2

)
e−2πiα·u du

=

∫
RN−1

N−1∏
n=1

(
1− 1

16π2L2
∂2

∂α2
n

)
R(u)e−2πiα·u du

=
N−1∏
n=1

(
1− 1

16π2L2
∂2

∂α2
n

)
R̂(α).
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Proof of Theorem 1

R̂(α) =

∫
RN−1

∞∫
−∞

( N∏
n=1

R(−an + iεn (un/L− t)) e−2πiαnun

)
dt du

=

∫
RN−1

∞∫
−∞

R(−aN − iεN t)
( N−1∏

n=1

R(−an + iεnun/L) e−2πiαn(un+Lt)
)

dt du

by the substitutions un → un + tL for n < N. Since R(z) = X zΓ(z), we
can apply Lemma 2 to above equation.

Lemma 2
Let 0 < a < 1, A ∈ R, and ε = ±1. Then∫ ∞

−∞
eiAξ Γ(−a + iεξ) dξ = 2π eεaA (e−e−εA − 1

)
.
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Recall Theorem 2 (I ↔ P)

Theorem 2
Assume RH and let a = (a1,a2, . . . ,aN) with an = An/ log T and
An > 0 for 1 ≤ n ≤ N. Also let 1 ≤ J < N and ε = (ε1, ε2, . . . , εN),
where ε1, . . . , εJ are all one, and εJ+1, . . . , εN are all negative one.
Then for 1/2 ≤ σ ≤ 9/10 we have

∞∫
−∞

( N∏
n=1

ζ ′

ζ
(σ + an + iεnt)

)(
sin t/2T

t

)2

dt

=
π

2
P
(
σ − 1

2
,a, J; T

)
+ O

(
log2N+1 T

T 2

)
.

The constant implied by the O-term depends on A1, . . . ,AN but not on
σ, J, or T .
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Proof of Theorem 2

Lemma 3
Assume RH. Suppose that |bl | < 1

10 with Re bl > 0. Then for
1
2 ≤ σ0 ≤ 9

10 ,

Ψb(x) = (−1)N
∑
n≤x

′
Λb(n) = Rb(x) +

1
2πi

σ0+i∞∫
σ0−i∞

L∏
l=1

ζ ′

ζ
(s + bl)

xs

s
ds,

where Rb(x) is the sum of the residues of

L∏
l=1

ζ ′

ζ
(s + bl)

xs

s

at the points s = 1− bl .

Lemma 3 holds by Perron’s formula.
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Proof of Theorem 2

Recalling that ∆aJ (x) = (−1)N∑′
n≤x ΛaJ (n)− RaJ (x), we see from

Lemma 3 that

∆aJ (eτ+δ)−∆aJ (eτ )

eστ

=
1

2π

∞∫
−∞

J∏
j=1

ζ ′

ζ
(σ + aj + it)

(
eδ(σ+it) − 1
σ + it

)
e−2πit(−τ/2π)dt

for 1
2 ≤ σ ≤

9
10 . This expresses the left-hand side as a Fourier

transform.

Yoonbok Lee (University of Rochester) Correlations of Zeros Aug 21, 2012 30 / 41



Proof of Theorem 2
We use Plancherel’s formula in the form∫ ∞

−∞
f̂ (τ)ĝ(τ)dτ =

∫ ∞
−∞

f (t)g(−t)dt ,

where
f̂ (τ) =

∫ ∞
−∞

f (t)e−2πitτdt

and similarly for ĝ. Then we obtain∫ ∞
−∞

(
∆aJ (eτ+δ)−∆aJ (eτ )

)(
∆a′J

(eτ+δ)−∆a′J
(eτ )

)
e−2στdτ

=
1

2π

∞∫
−∞

N∏
n=1

ζ ′

ζ
(σ + an + iεnt)

∣∣∣∣eδ(σ+it) − 1
σ + it

∣∣∣∣2dt .

Compare it with the definition P(β,a, J; T ) =∫∞
1

(
∆aJ

(
x + x

T

)
−∆aJ (x)

)(
∆a′J

(
x + x

T

)
−∆a′J

(x)
)

dx
x2+2β .
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Recall Theorem 3 (I ↔ P)
Theorem 3
Assume RH, Hypothesis AC, and Hypothesis LC. Suppose that C is
fixed and positive, and that a = (a1, . . . ,aN) with an = An/ log T and
each An fixed and positive. Define

I±(σ, a, ε; T ) =

T∫
−T

N∏
n=1

ζ ′

ζ
(σ + an + iεnt) dt .

If there exists a number f (C,A, J) such that one of the following
asymptotic formulas holds, then the other also holds:

I±

(
1
2

+
C

log T
,

A
log T

, ε; T
)
∼ f (C,A, J) T logN T ,

P
(

C
log T

,
A

log T
, J; T

)
∼ f (C,A, J)

logN T
2T

.
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Proof of Theorem 3
The first asymptotic formula of Theorem 3 is

I±

(
1
2

+
C

log T
,

A
log T

, ε; T
)

=

T∫
−T

N∏
n=1

ζ ′

ζ

(
1
2

+
C + An

log T
+ iεnt

)
dt

= 2

T∫
0

Re
N∏

n=1

ζ ′

ζ

(
1
2

+
C + An

log T
+ iεnt

)
dt

∼ f (C,A, J) T logN T .

Define

g(t , η) = 2Re
N∏

n=1

ζ ′

ζ

(1
2

+
C + An

log η
+ iεnt

)/(
f (C,A, J) logN η

)
.

Then it is ∫ T

0
g(t ,T )dt ∼ T .
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Proof of Theorem 3
The second asymptotic formula of Theorem 3 is, by Theorem 2,

P
(

C
log T

,
A

log T
, J; T

)

∼
∞∫
−∞

( N∏
n=1

ζ ′

ζ

(
1
2

+
C + An

log T
+ iεnt

))(
sin t/2T

t

)2

dt

= 2

∞∫
0

(
Re

N∏
n=1

ζ ′

ζ

(
1
2

+
C + An

log T
+ iεnt

))(
sin t/2T

t

)2

dt

∼ f (C,A, J)
logN T

2T

and it is equivalent to∫ ∞
0

g(t ,T )

(
sin t/2T

t

)2

dt ∼ π

2
1

2T
.
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Proof of Theorem 3

Therefore, Theorem 3 is to show the equivalence of two asymptotic
formulas ∫ T

0
g(t ,T )dt ∼ T

and ∫ ∞
0

g(t ,T )

(
sin t/2T

t

)2

dt ∼ π

2
1

2T
,

where

g(t , η) = 2Re
N∏

n=1

ζ ′

ζ

(1
2

+
C + An

log η
+ iεnt

)/(
f (C,A, J) logN η

)
.
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Proof of Theorem 3
We appeal to modified versions of two Lemmas in Goldston’s paper.
These concern the equivalence under certain conditions of∫ T

0
g(t , η)dt ∼ T (1)

as T →∞, and ∫ ∞
0

g(t , η)

(
sinκt

t

)2

dt ∼ π

2
κ (2)

as κ→ 0+.

First we see 1→ 2.

Lemma 1→ 2
Let g(t , η) be a continuous function of t and η for t ≥ 0 and η ≥ 2.
Suppose that g(t , η)� logN(t + 2) and that

∫ T
0 |g(t , η)|2dt � T holds

for η log−N−1 η ≤ T ≤ η logN+1 η.
If (1) holds uniformly for η log−N−1 η ≤ T ≤ η logN+1 η, then (2) holds
for η ≈ 1/κ.
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Proof of Theorem 3
To apply Lemma 1→ 2, we should prove that∫ T

0
g(t ,T )dt ∼ T

implies ∫ T

0
g(t , η)dt ∼ T

holds uniformly for η log−N−1 η ≤ T ≤ η logN+1 η.

It is proved by

Lemma
Assume RH, Hypothesis AC, and Hypothesis LC. Let B1, . . . ,BN be
fixed positive real numbers. Suppose that
η log−N−2 η ≤ T ≤ η logN+2 η. Then we have∫ T

0
∏N

n=1
ζ′

ζ

(
1
2 + Bn

log η + iεnt
)

dt =∫ T
0
∏N

n=1
ζ′

ζ

(
1
2 + Bn

log T + iεnt
)

dt + O(T logN−1 T log log T ).
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Proof of Theorem 3
Lemma
Assume RH, Hypothesis AC, and Hypothesis LC. Let B1, . . . ,BN be
fixed positive real numbers. Suppose that
η log−N−2 η ≤ T ≤ η logN+2 η. Then we have∫ T

0
∏N

n=1
ζ′

ζ

(
1
2 + Bn

log η + iεnt
)

dt =∫ T
0
∏N

n=1
ζ′

ζ

(
1
2 + Bn

log T + iεnt
)

dt + O(T logN−1 T log log T ).

We use the fact
log η = log T + O(log log T )

and the following consequence of Corollary 1 : Under RH, AC and LC
we have

∫ T

0

∣∣∣∣∣∣
∏
j≤J

ζ ′

ζ

(
1
2

+
Bj

log T
+ it

)∣∣∣∣∣∣
2

dt � T (log T )2J .
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Proof of Theorem 3
For the converse, we need the followings:∫ T

0
g(t , η)dt ∼ T (3)

as T →∞, and ∫ ∞
0

g(t , η)

(
sinκt

t

)2

dt ∼ π

2
κ (4)

as κ→ 0+.

Lemma 4→ 3
Let g(t , η) be a continuous function of t and η for t ≥ 0 and η ≥ 2.
Suppose that g(t , η)� logN(t + 2) and that

∫ T
0 |g(t , η)|2dt � T holds

for η log−N−1 η ≤ T ≤ η logN+1 η.
Conversely, if (4) holds uniformly for η−1 log−N−1 η ≤ κ ≤ η−1 logN+1 η,
then (3) holds for η ≈ T .
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Proof of Theorem 3

We also need

Lemma
Assume RH, Hypothesis AC, and Hypothesis LC. Let B1, . . . ,BN be
fixed positive real numbers. Suppose that
η log−N−2 η ≤ T ≤ η logN+2 η. Then we have∫∞

0
∏N

n=1
ζ′

ζ

(
1
2 + Bn

log η + iεnt
)(

sin t/2T
t

)2
dt =∫∞

0
∏N

n=1
ζ′

ζ

(
1
2 + Bn

log T + iεnt
)(

sin t/2T
t

)2
dt + O(T−1 logN−1 T log log T ).

By the similar argument to 1→ 2, we can complete the proof of
Theorem 3.
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THANK YOU.
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